Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Let's examine the given statement about the distance between the two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((4,8)\)[/tex] to determine if it's true or false.
The distance between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is calculated using the distance formula:
[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
In this case, the points we are given are [tex]\((x_1, y_1)\)[/tex] and [tex]\((4, 8)\)[/tex]. Plugging these values into the distance formula, we get:
[tex]\[ d = \sqrt{(4 - x_1)^2 + (8 - y_1)^2} \][/tex]
Now let's compare this with the given expression:
[tex]\[ \sqrt{(x_1 - 8)^2 + (y_1 - 4)^2} \][/tex]
According to properties of squares, we know that the expressions [tex]\((4 - x_1)^2\)[/tex] and [tex]\((x_1 - 8)^2\)[/tex] are equivalent because squaring a number negates the sign of any difference:
[tex]\[ (4 - x_1)^2 = (x_1 - 4)^2 \][/tex]
Similarly, for the second expression:
[tex]\[ (8 - y_1)^2 = (y_1 - 8)^2 \][/tex]
Therefore:
[tex]\[ \sqrt{(4 - x_1)^2 + (8 - y_1)^2} = \sqrt{(x_1 - 8)^2 + (y_1 - 4)^2} \][/tex]
Since both forms of the distance equations match, the given statement is true. Therefore, the correct answer is:
A. True
The distance between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is calculated using the distance formula:
[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
In this case, the points we are given are [tex]\((x_1, y_1)\)[/tex] and [tex]\((4, 8)\)[/tex]. Plugging these values into the distance formula, we get:
[tex]\[ d = \sqrt{(4 - x_1)^2 + (8 - y_1)^2} \][/tex]
Now let's compare this with the given expression:
[tex]\[ \sqrt{(x_1 - 8)^2 + (y_1 - 4)^2} \][/tex]
According to properties of squares, we know that the expressions [tex]\((4 - x_1)^2\)[/tex] and [tex]\((x_1 - 8)^2\)[/tex] are equivalent because squaring a number negates the sign of any difference:
[tex]\[ (4 - x_1)^2 = (x_1 - 4)^2 \][/tex]
Similarly, for the second expression:
[tex]\[ (8 - y_1)^2 = (y_1 - 8)^2 \][/tex]
Therefore:
[tex]\[ \sqrt{(4 - x_1)^2 + (8 - y_1)^2} = \sqrt{(x_1 - 8)^2 + (y_1 - 4)^2} \][/tex]
Since both forms of the distance equations match, the given statement is true. Therefore, the correct answer is:
A. True
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.