Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Given the function [tex]\( f(x) = x^3 - 5 \)[/tex],
### Step-by-Step Solution:
1. Determine whether the function is one-to-one:
- A function is one-to-one if no horizontal line intersects its graph more than once. This can be determined by checking if its derivative is never zero over its entire domain, implying that the function is monotonic (either strictly increasing or strictly decreasing).
- Calculate the derivative of [tex]\( f(x) \)[/tex]:
[tex]\[ f'(x) = \frac{d}{dx}(x^3 - 5) = 3x^2 \][/tex]
- Set the derivative equal to zero and solve:
[tex]\[ 3x^2 = 0 \implies x = 0 \][/tex]
- The derivative [tex]\( f'(x) = 3x^2 \)[/tex] is zero only at [tex]\( x = 0 \)[/tex]. Since [tex]\( 3x^2 \)[/tex] is non-negative and equals zero just at [tex]\( x = 0 \)[/tex], the function is strictly increasing everywhere except at [tex]\( x = 0 \)[/tex]. Therefore, [tex]\( f(x) = x^3 - 5 \)[/tex] is indeed a one-to-one function.
2. Finding the inverse function [tex]\( f^{-1}(x) \)[/tex]:
- To find the inverse, replace [tex]\( f(x) \)[/tex] with [tex]\( y \)[/tex] and solve for [tex]\( x \)[/tex]:
[tex]\[ y = x^3 - 5 \][/tex]
- Solve for [tex]\( x \)[/tex]:
[tex]\[ y + 5 = x^3 \implies x = (y + 5)^{1/3} \][/tex]
- Hence, the inverse function is:
[tex]\[ f^{-1}(x) = (x + 5)^{1/3} \][/tex]
Therefore, the answer is:
A. The function [tex]\( f(x) \)[/tex] is one-to-one and [tex]\( f^{-1}(x) = (x + 5)^{1/3} \)[/tex].
3. Graphing [tex]\( f \)[/tex] and [tex]\( f^{-1} \)[/tex] on the same axes:
- The graph of [tex]\( f(x) = x^3 - 5 \)[/tex] is a cubic curve shifted downward by 5 units.
- The graph of [tex]\( f^{-1}(x) = (x + 5)^{1/3} \)[/tex] can be obtained by reflecting the graph of [tex]\( f(x) \)[/tex] across the line [tex]\( y = x \)[/tex].
Typically, you would sketch [tex]\( f(x) \)[/tex] and [tex]\( f^{-1}(x) \)[/tex] on the same set of axes, showing their symmetry about the line [tex]\( y = x \)[/tex].
4. Domain and Range of [tex]\( f \)[/tex] and [tex]\( f^{-1} \)[/tex]:
- The domain of [tex]\( f(x) = x^3 - 5 \)[/tex] is all real numbers:
[tex]\[ \text{Domain of } f: (-\infty, \infty) \][/tex]
- The range of [tex]\( f(x) = x^3 - 5 \)[/tex] is also all real numbers:
[tex]\[ \text{Range of } f: (-\infty, \infty) \][/tex]
- The domain of [tex]\( f^{-1}(x) = (x + 5)^{1/3} \)[/tex] is all real numbers:
[tex]\[ \text{Domain of } f^{-1}: (-\infty, \infty) \][/tex]
- The range of [tex]\( f^{-1}(x) = (x + 5)^{1/3} \)[/tex] is also all real numbers:
[tex]\[ \text{Range of } f^{-1}: (-\infty, \infty) \][/tex]
In conclusion:
- The function [tex]\( f(x) = x^3 - 5 \)[/tex] is one-to-one.
- The inverse function is [tex]\( f^{-1}(x) = (x + 5)^{1/3} \)[/tex].
- The domain and range for both [tex]\( f \)[/tex] and [tex]\( f^{-1} \)[/tex] are all real numbers.
### Step-by-Step Solution:
1. Determine whether the function is one-to-one:
- A function is one-to-one if no horizontal line intersects its graph more than once. This can be determined by checking if its derivative is never zero over its entire domain, implying that the function is monotonic (either strictly increasing or strictly decreasing).
- Calculate the derivative of [tex]\( f(x) \)[/tex]:
[tex]\[ f'(x) = \frac{d}{dx}(x^3 - 5) = 3x^2 \][/tex]
- Set the derivative equal to zero and solve:
[tex]\[ 3x^2 = 0 \implies x = 0 \][/tex]
- The derivative [tex]\( f'(x) = 3x^2 \)[/tex] is zero only at [tex]\( x = 0 \)[/tex]. Since [tex]\( 3x^2 \)[/tex] is non-negative and equals zero just at [tex]\( x = 0 \)[/tex], the function is strictly increasing everywhere except at [tex]\( x = 0 \)[/tex]. Therefore, [tex]\( f(x) = x^3 - 5 \)[/tex] is indeed a one-to-one function.
2. Finding the inverse function [tex]\( f^{-1}(x) \)[/tex]:
- To find the inverse, replace [tex]\( f(x) \)[/tex] with [tex]\( y \)[/tex] and solve for [tex]\( x \)[/tex]:
[tex]\[ y = x^3 - 5 \][/tex]
- Solve for [tex]\( x \)[/tex]:
[tex]\[ y + 5 = x^3 \implies x = (y + 5)^{1/3} \][/tex]
- Hence, the inverse function is:
[tex]\[ f^{-1}(x) = (x + 5)^{1/3} \][/tex]
Therefore, the answer is:
A. The function [tex]\( f(x) \)[/tex] is one-to-one and [tex]\( f^{-1}(x) = (x + 5)^{1/3} \)[/tex].
3. Graphing [tex]\( f \)[/tex] and [tex]\( f^{-1} \)[/tex] on the same axes:
- The graph of [tex]\( f(x) = x^3 - 5 \)[/tex] is a cubic curve shifted downward by 5 units.
- The graph of [tex]\( f^{-1}(x) = (x + 5)^{1/3} \)[/tex] can be obtained by reflecting the graph of [tex]\( f(x) \)[/tex] across the line [tex]\( y = x \)[/tex].
Typically, you would sketch [tex]\( f(x) \)[/tex] and [tex]\( f^{-1}(x) \)[/tex] on the same set of axes, showing their symmetry about the line [tex]\( y = x \)[/tex].
4. Domain and Range of [tex]\( f \)[/tex] and [tex]\( f^{-1} \)[/tex]:
- The domain of [tex]\( f(x) = x^3 - 5 \)[/tex] is all real numbers:
[tex]\[ \text{Domain of } f: (-\infty, \infty) \][/tex]
- The range of [tex]\( f(x) = x^3 - 5 \)[/tex] is also all real numbers:
[tex]\[ \text{Range of } f: (-\infty, \infty) \][/tex]
- The domain of [tex]\( f^{-1}(x) = (x + 5)^{1/3} \)[/tex] is all real numbers:
[tex]\[ \text{Domain of } f^{-1}: (-\infty, \infty) \][/tex]
- The range of [tex]\( f^{-1}(x) = (x + 5)^{1/3} \)[/tex] is also all real numbers:
[tex]\[ \text{Range of } f^{-1}: (-\infty, \infty) \][/tex]
In conclusion:
- The function [tex]\( f(x) = x^3 - 5 \)[/tex] is one-to-one.
- The inverse function is [tex]\( f^{-1}(x) = (x + 5)^{1/3} \)[/tex].
- The domain and range for both [tex]\( f \)[/tex] and [tex]\( f^{-1} \)[/tex] are all real numbers.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.