Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Determine whether the function is one-to-one.

[tex]\[ f(x) = 2x^3 - 6 \][/tex]

Is the function one-to-one?

A. No, because the [tex]\( f(x) \)[/tex] value 2 corresponds to two [tex]\( x \)[/tex]-values [tex]\(\square\)[/tex] and [tex]\(\square\)[/tex].

B. Yes, because each [tex]\( x \)[/tex]-value corresponds to only one [tex]\( f(x) \)[/tex] value, and each [tex]\( f(x) \)[/tex] value corresponds to only one [tex]\( x \)[/tex]-value.

Sagot :

To determine whether the function [tex]\( f(x) = 2x^3 - 6 \)[/tex] is one-to-one, we can use the derivative test, which involves checking the behavior of the function's derivative.

1. Find the derivative of the function:
The derivative of [tex]\( f(x) = 2x^3 - 6 \)[/tex] is given by:
[tex]\[ f'(x) = \frac{d}{dx}(2x^3 - 6) = 6x^2. \][/tex]

2. Identify critical points:
Critical points occur where the derivative is zero. Set the derivative equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ 6x^2 = 0 \Rightarrow x^2 = 0 \Rightarrow x = 0. \][/tex]
So, the critical point is [tex]\( x = 0 \)[/tex].

3. Determine the nature of critical points:
Next, we check whether the derivative changes sign around the critical point. Evaluate the second derivative to check the concavity at [tex]\( x = 0 \)[/tex]:
[tex]\[ f''(x) = \frac{d}{dx}(6x^2) = 12x. \][/tex]
At [tex]\( x = 0 \)[/tex], the second derivative [tex]\( f''(0) = 12 \times 0 = 0 \)[/tex], which does not tell us about concavity. However, for [tex]\( x < 0 \)[/tex] and [tex]\( x > 0 \)[/tex], the derivative [tex]\( 6x^2 \)[/tex] remains non-negative.

4. Test the behavior of [tex]\( f'(x) \)[/tex]:
Since the derivative [tex]\( 6x^2 \geq 0 \)[/tex] for all [tex]\( x \)[/tex] and only touches zero at [tex]\( x = 0 \)[/tex], this implies that the function is non-decreasing at [tex]\( x = 0 \)[/tex]. Outside of this point, [tex]\( 6x^2 > 0 \)[/tex], indicating the function is strictly increasing or decreasing in any interval that does not include [tex]\( x = 0 \)[/tex].

5. Conclusion:
Because the function is monotonic and does not change direction (it either increases or remains flat, but does not decrease), [tex]\( f(x) = 2x^3 - 6 \)[/tex] is one-to-one. For every [tex]\( x \)[/tex]-value, there is a unique corresponding [tex]\( f(x) \)[/tex]-value, and vice versa.

Thus, the correct choice is:

B. Yes, because each [tex]\( x \)[/tex]-value corresponds to only one [tex]\( f(x) \)[/tex]-value, and each [tex]\( f(x) \)[/tex]-value corresponds to only one [tex]\( x \)[/tex]-value.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.