Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine whether the function [tex]\( f(x) = 3x - 5 \)[/tex] is one-to-one, follow these steps:
Step 1: Verify if the function is one-to-one:
A function [tex]\( f(x) \)[/tex] is one-to-one if for any two different inputs [tex]\( x_1 \)[/tex] and [tex]\( x_2 \)[/tex], the outputs [tex]\( f(x_1) \)[/tex] and [tex]\( f(x_2) \)[/tex] are different. Mathematically, [tex]\( f(x_1) = f(x_2) \)[/tex] implies [tex]\( x_1 = x_2 \)[/tex].
For [tex]\( f(x) = 3x - 5 \)[/tex]:
Suppose [tex]\( f(x_1) = f(x_2) \)[/tex].
[tex]\[ 3x_1 - 5 = 3x_2 - 5 \][/tex]
Adding 5 to both sides:
[tex]\[ 3x_1 = 3x_2 \][/tex]
Dividing both sides by 3:
[tex]\[ x_1 = x_2 \][/tex]
Since [tex]\( x_1 = x_2 \)[/tex] is always true for any different inputs [tex]\( x_1 \)[/tex] and [tex]\( x_2 \)[/tex], [tex]\( f(x) = 3x - 5 \)[/tex] is a one-to-one function.
Step 2: Find the inverse function:
To find the inverse function [tex]\( f^{-1}(x) \)[/tex], we need to solve the equation [tex]\( y = 3x - 5 \)[/tex] for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex].
Starting from the equation:
[tex]\[ y = 3x - 5 \][/tex]
Add 5 to both sides:
[tex]\[ y + 5 = 3x \][/tex]
Divide both sides by 3:
[tex]\[ x = \frac{y + 5}{3} \][/tex]
Thus, the inverse function [tex]\( f^{-1}(x) \)[/tex] is:
[tex]\[ y = f^{-1}(x) = \frac{x + 5}{3} \][/tex]
Step 3: Graph [tex]\( f(x) \)[/tex] and [tex]\( f^{-1}(x) \)[/tex]:
To graph [tex]\( f(x) = 3x - 5 \)[/tex] and its inverse [tex]\( f^{-1}(x) = \frac{x + 5}{3} \)[/tex] on the same axes:
1. Plot the function [tex]\( f(x) = 3x - 5 \)[/tex].
2. Plot the inverse function [tex]\( f^{-1}(x) = \frac{x + 5}{3} \)[/tex].
3. The graphs of these functions should be reflections of each other across the line [tex]\( y = x \)[/tex].
Step 4: Determine the domain and range:
1. Domain of [tex]\( f(x) \)[/tex]:
Since [tex]\( f(x) \)[/tex] is a linear function and defined for all real numbers, its domain is all real numbers:
[tex]\[ \text{Domain of } f(x) = (-\infty, \infty) \][/tex]
2. Range of [tex]\( f(x) \)[/tex]:
As a linear function, [tex]\( f(x) \)[/tex] can produce any real number output, so its range is also all real numbers:
[tex]\[ \text{Range of } f(x) = (-\infty, \infty) \][/tex]
3. Domain of [tex]\( f^{-1}(x) \)[/tex]:
Since [tex]\( f^{-1}(x) \)[/tex] is also a linear function and defined for all real numbers, its domain is all real numbers:
[tex]\[ \text{Domain of } f^{-1}(x) = (-\infty, \infty) \][/tex]
4. Range of [tex]\( f^{-1}(x) \)[/tex]:
As a linear function, [tex]\( f^{-1}(x) \)[/tex] can produce any real number output, so its range is:
[tex]\[ \text{Range of } f^{-1}(x) = (-\infty, \infty) \][/tex]
Conclusion for part (a):
The function [tex]\( f(x) \)[/tex] is one-to-one.
The equation for the inverse function is:
[tex]\[ y = f^{-1}(x) = \frac{x + 5}{3} \][/tex]
So the correct choice is:
A. The function [tex]\( f(x) \)[/tex] is one-to-one and [tex]\( f^{-1}(x) = \frac{x + 5}{3} \)[/tex].
Graphing:
While I cannot graph directly here, you can plot the lines [tex]\( f(x) = 3x - 5 \)[/tex] and [tex]\( f^{-1}(x) = \frac{x + 5}{3} \)[/tex] using graphing software or graph paper. Remember, the two should be symmetric with respect to the line [tex]\( y = x \)[/tex].
Domain and Range Summary:
- Domain of [tex]\( f(x) \)[/tex]: All real numbers [tex]\( (-\infty, \infty) \)[/tex]
- Range of [tex]\( f(x) \)[/tex]: All real numbers [tex]\( (-\infty, \infty) \)[/tex]
- Domain of [tex]\( f^{-1}(x) \)[/tex]: All real numbers [tex]\( (-\infty, \infty) \)[/tex]
- Range of [tex]\( f^{-1}(x) \)[/tex]: All real numbers [tex]\( (-\infty, \infty) \)[/tex]
Step 1: Verify if the function is one-to-one:
A function [tex]\( f(x) \)[/tex] is one-to-one if for any two different inputs [tex]\( x_1 \)[/tex] and [tex]\( x_2 \)[/tex], the outputs [tex]\( f(x_1) \)[/tex] and [tex]\( f(x_2) \)[/tex] are different. Mathematically, [tex]\( f(x_1) = f(x_2) \)[/tex] implies [tex]\( x_1 = x_2 \)[/tex].
For [tex]\( f(x) = 3x - 5 \)[/tex]:
Suppose [tex]\( f(x_1) = f(x_2) \)[/tex].
[tex]\[ 3x_1 - 5 = 3x_2 - 5 \][/tex]
Adding 5 to both sides:
[tex]\[ 3x_1 = 3x_2 \][/tex]
Dividing both sides by 3:
[tex]\[ x_1 = x_2 \][/tex]
Since [tex]\( x_1 = x_2 \)[/tex] is always true for any different inputs [tex]\( x_1 \)[/tex] and [tex]\( x_2 \)[/tex], [tex]\( f(x) = 3x - 5 \)[/tex] is a one-to-one function.
Step 2: Find the inverse function:
To find the inverse function [tex]\( f^{-1}(x) \)[/tex], we need to solve the equation [tex]\( y = 3x - 5 \)[/tex] for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex].
Starting from the equation:
[tex]\[ y = 3x - 5 \][/tex]
Add 5 to both sides:
[tex]\[ y + 5 = 3x \][/tex]
Divide both sides by 3:
[tex]\[ x = \frac{y + 5}{3} \][/tex]
Thus, the inverse function [tex]\( f^{-1}(x) \)[/tex] is:
[tex]\[ y = f^{-1}(x) = \frac{x + 5}{3} \][/tex]
Step 3: Graph [tex]\( f(x) \)[/tex] and [tex]\( f^{-1}(x) \)[/tex]:
To graph [tex]\( f(x) = 3x - 5 \)[/tex] and its inverse [tex]\( f^{-1}(x) = \frac{x + 5}{3} \)[/tex] on the same axes:
1. Plot the function [tex]\( f(x) = 3x - 5 \)[/tex].
2. Plot the inverse function [tex]\( f^{-1}(x) = \frac{x + 5}{3} \)[/tex].
3. The graphs of these functions should be reflections of each other across the line [tex]\( y = x \)[/tex].
Step 4: Determine the domain and range:
1. Domain of [tex]\( f(x) \)[/tex]:
Since [tex]\( f(x) \)[/tex] is a linear function and defined for all real numbers, its domain is all real numbers:
[tex]\[ \text{Domain of } f(x) = (-\infty, \infty) \][/tex]
2. Range of [tex]\( f(x) \)[/tex]:
As a linear function, [tex]\( f(x) \)[/tex] can produce any real number output, so its range is also all real numbers:
[tex]\[ \text{Range of } f(x) = (-\infty, \infty) \][/tex]
3. Domain of [tex]\( f^{-1}(x) \)[/tex]:
Since [tex]\( f^{-1}(x) \)[/tex] is also a linear function and defined for all real numbers, its domain is all real numbers:
[tex]\[ \text{Domain of } f^{-1}(x) = (-\infty, \infty) \][/tex]
4. Range of [tex]\( f^{-1}(x) \)[/tex]:
As a linear function, [tex]\( f^{-1}(x) \)[/tex] can produce any real number output, so its range is:
[tex]\[ \text{Range of } f^{-1}(x) = (-\infty, \infty) \][/tex]
Conclusion for part (a):
The function [tex]\( f(x) \)[/tex] is one-to-one.
The equation for the inverse function is:
[tex]\[ y = f^{-1}(x) = \frac{x + 5}{3} \][/tex]
So the correct choice is:
A. The function [tex]\( f(x) \)[/tex] is one-to-one and [tex]\( f^{-1}(x) = \frac{x + 5}{3} \)[/tex].
Graphing:
While I cannot graph directly here, you can plot the lines [tex]\( f(x) = 3x - 5 \)[/tex] and [tex]\( f^{-1}(x) = \frac{x + 5}{3} \)[/tex] using graphing software or graph paper. Remember, the two should be symmetric with respect to the line [tex]\( y = x \)[/tex].
Domain and Range Summary:
- Domain of [tex]\( f(x) \)[/tex]: All real numbers [tex]\( (-\infty, \infty) \)[/tex]
- Range of [tex]\( f(x) \)[/tex]: All real numbers [tex]\( (-\infty, \infty) \)[/tex]
- Domain of [tex]\( f^{-1}(x) \)[/tex]: All real numbers [tex]\( (-\infty, \infty) \)[/tex]
- Range of [tex]\( f^{-1}(x) \)[/tex]: All real numbers [tex]\( (-\infty, \infty) \)[/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.