Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Which points are solutions to the linear inequality [tex]\( y \ \textless \ 0.5x + 2 \)[/tex]? Select three options.

A. [tex]\((-3, -2)\)[/tex]

B. [tex]\((-2, 1)\)[/tex]

C. [tex]\((-1, -2)\)[/tex]

D. [tex]\((-1, 2)\)[/tex]

E. [tex]\((1, -2)\)[/tex]


Sagot :

To determine which points satisfy the inequality [tex]\( y < 0.5x + 2 \)[/tex], we'll check each point individually by substituting the [tex]\(x\)[/tex] and [tex]\( y\)[/tex] values into the inequality:

1. Point [tex]\((-3, -2)\)[/tex]:
- Substitute [tex]\( x = -3 \)[/tex] into the inequality: [tex]\( y < 0.5(-3) + 2 \)[/tex]
- Calculate the right-hand side: [tex]\( 0.5(-3) + 2 = -1.5 + 2 = 0.5 \)[/tex]
- So, the inequality becomes: [tex]\( -2 < 0.5 \)[/tex]
- This is true, so [tex]\((-3, -2)\)[/tex] satisfies the inequality.

2. Point [tex]\((-2, 1)\)[/tex]:
- Substitute [tex]\( x = -2 \)[/tex] into the inequality: [tex]\( y < 0.5(-2) + 2 \)[/tex]
- Calculate the right-hand side: [tex]\( 0.5(-2) + 2 = -1 + 2 = 1 \)[/tex]
- So, the inequality becomes: [tex]\( 1 < 1 \)[/tex]
- This is false, so [tex]\((-2, 1)\)[/tex] does not satisfy the inequality.

3. Point [tex]\((-1, -2)\)[/tex]:
- Substitute [tex]\( x = -1 \)[/tex] into the inequality: [tex]\( y < 0.5(-1) + 2 \)[/tex]
- Calculate the right-hand side: [tex]\( 0.5(-1) + 2 = -0.5 + 2 = 1.5 \)[/tex]
- So, the inequality becomes: [tex]\( -2 < 1.5 \)[/tex]
- This is true, so [tex]\((-1, -2)\)[/tex] satisfies the inequality.

4. Point [tex]\((-1, 2)\)[/tex]:
- Substitute [tex]\( x = -1 \)[/tex] into the inequality: [tex]\( y < 0.5(-1) + 2 \)[/tex]
- Calculate the right-hand side: [tex]\( 0.5(-1) + 2 = -0.5 + 2 = 1.5 \)[/tex]
- So, the inequality becomes: [tex]\( 2 < 1.5 \)[/tex]
- This is false, so [tex]\((-1, 2)\)[/tex] does not satisfy the inequality.

5. Point [tex]\((1, -2)\)[/tex]:
- Substitute [tex]\( x = 1 \)[/tex] into the inequality: [tex]\( y < 0.5(1) + 2 \)[/tex]
- Calculate the right-hand side: [tex]\( 0.5(1) + 2 = 0.5 + 2 = 2.5 \)[/tex]
- So, the inequality becomes: [tex]\( -2 < 2.5 \)[/tex]
- This is true, so [tex]\((1, -2)\)[/tex] satisfies the inequality.

The points that satisfy the inequality [tex]\( y < 0.5x + 2 \)[/tex] are:
- [tex]\((-3, -2)\)[/tex]
- [tex]\((-1, -2)\)[/tex]
- [tex]\((1, -2)\)[/tex]

These are the three options that are solutions to the inequality.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.