Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine whether the function [tex]\( f(x) = \frac{4}{x-5} \)[/tex] is one-to-one, we need to check if each value of [tex]\( f(x) \)[/tex] uniquely corresponds to one value of [tex]\( x \)[/tex].
For the function to be one-to-one, if [tex]\( f(a) = f(b) \)[/tex], then it must be true that [tex]\( a = b \)[/tex].
Let's assume [tex]\( f(a) = f(b) \)[/tex]:
[tex]\[ \frac{4}{a-5} = \frac{4}{b-5} \][/tex]
We can multiply both sides by [tex]\((a-5)(b-5)\)[/tex] to clear the fractions:
[tex]\[ 4(b-5) = 4(a-5) \][/tex]
Divide both sides by 4:
[tex]\[ b-5 = a-5 \][/tex]
Adding 5 to both sides:
[tex]\[ b = a \][/tex]
Thus, we can conclude [tex]\( f \)[/tex] is indeed one-to-one since [tex]\( f(a) = f(b) \)[/tex] leads to [tex]\( a = b \)[/tex].
(a) Write an equation for the inverse function in the form [tex]\( y = f^{-1}(x) \)[/tex].
To find the inverse function, we start by replacing [tex]\( f(x) \)[/tex] with [tex]\( y \)[/tex]:
[tex]\[ y = \frac{4}{x-5} \][/tex]
Then we solve for [tex]\( x \)[/tex]. First, we multiply both sides by [tex]\( x-5 \)[/tex]:
[tex]\[ y(x-5) = 4 \][/tex]
Next, we solve for [tex]\( x \)[/tex]:
[tex]\[ yx - 5y = 4 \][/tex]
Add [tex]\( 5y \)[/tex] to both sides:
[tex]\[ yx = 4 + 5y \][/tex]
Divide both sides by [tex]\( y \)[/tex]:
[tex]\[ x = \frac{4 + 5y}{y} \][/tex]
Now, replace [tex]\( y \)[/tex] with [tex]\( x \)[/tex] to find the inverse function [tex]\( f^{-1}(x) \)[/tex]:
[tex]\[ f^{-1}(x) = \frac{4 + 5x}{x} \][/tex]
So,
[tex]\[ f^{-1}(x) = \frac{4 + 5x}{x}, \ x \neq 0 \][/tex]
The correct choice is A:
A. The function is one-to-one. [tex]\( f^{-1}(x) = \frac{4 + 5x}{x}, x \neq 0 \)[/tex].
(b) Graph [tex]\( f \)[/tex] and [tex]\( f^{-1} \)[/tex] on the same axes.
1. Graph of [tex]\( f(x) = \frac{4}{x-5} \)[/tex]: This is a hyperbolic function with a vertical asymptote at [tex]\( x = 5 \)[/tex] and a horizontal asymptote at [tex]\( y = 0 \)[/tex].
2. Graph of [tex]\( f^{-1}(x) = \frac{4 + 5x}{x} \)[/tex]: This function will have different behavior due to the terms in the numerator and denominator. It's another rational function but with more complex asymptotes.
(c) Give the domain and range of [tex]\( f \)[/tex] and [tex]\( f^{-1} \)[/tex].
For [tex]\( f(x) = \frac{4}{x-5} \)[/tex]:
- Domain: All real numbers except [tex]\( x = 5 \)[/tex], as division by zero is undefined.
[tex]\[ \text{Domain of } f: (-\infty, 5) \cup (5, \infty) \][/tex]
- Range: All real numbers except [tex]\( y = 0 \)[/tex], as the function never outputs zero.
[tex]\[ \text{Range of } f: (-\infty, 0) \cup (0, \infty) \][/tex]
For [tex]\( f^{-1}(x) = \frac{4 + 5x}{x} \)[/tex]:
- Domain: All real numbers except [tex]\( x = 0 \)[/tex], as the function involves division by [tex]\( x \)[/tex].
[tex]\[ \text{Domain of } f^{-1}: (-\infty, 0) \cup (0, \infty) \][/tex]
- Range: All real numbers except [tex]\( y = 5 \)[/tex], since it is where the original function’s denominator would be zero.
[tex]\[ \text{Range of } f^{-1}: (-\infty, 5) \cup (5, \infty) \][/tex]
In conclusion:
- The function is one-to-one.
- The inverse function is [tex]\( f^{-1}(x) = \frac{4 + 5x}{x}, x \neq 0 \)[/tex].
- The graph of [tex]\( f \)[/tex] and [tex]\( f^{-1} \)[/tex] will show both as hyperbolic curves with respective asymptotic behaviors.
- The domain and range of both functions were specified.
For the function to be one-to-one, if [tex]\( f(a) = f(b) \)[/tex], then it must be true that [tex]\( a = b \)[/tex].
Let's assume [tex]\( f(a) = f(b) \)[/tex]:
[tex]\[ \frac{4}{a-5} = \frac{4}{b-5} \][/tex]
We can multiply both sides by [tex]\((a-5)(b-5)\)[/tex] to clear the fractions:
[tex]\[ 4(b-5) = 4(a-5) \][/tex]
Divide both sides by 4:
[tex]\[ b-5 = a-5 \][/tex]
Adding 5 to both sides:
[tex]\[ b = a \][/tex]
Thus, we can conclude [tex]\( f \)[/tex] is indeed one-to-one since [tex]\( f(a) = f(b) \)[/tex] leads to [tex]\( a = b \)[/tex].
(a) Write an equation for the inverse function in the form [tex]\( y = f^{-1}(x) \)[/tex].
To find the inverse function, we start by replacing [tex]\( f(x) \)[/tex] with [tex]\( y \)[/tex]:
[tex]\[ y = \frac{4}{x-5} \][/tex]
Then we solve for [tex]\( x \)[/tex]. First, we multiply both sides by [tex]\( x-5 \)[/tex]:
[tex]\[ y(x-5) = 4 \][/tex]
Next, we solve for [tex]\( x \)[/tex]:
[tex]\[ yx - 5y = 4 \][/tex]
Add [tex]\( 5y \)[/tex] to both sides:
[tex]\[ yx = 4 + 5y \][/tex]
Divide both sides by [tex]\( y \)[/tex]:
[tex]\[ x = \frac{4 + 5y}{y} \][/tex]
Now, replace [tex]\( y \)[/tex] with [tex]\( x \)[/tex] to find the inverse function [tex]\( f^{-1}(x) \)[/tex]:
[tex]\[ f^{-1}(x) = \frac{4 + 5x}{x} \][/tex]
So,
[tex]\[ f^{-1}(x) = \frac{4 + 5x}{x}, \ x \neq 0 \][/tex]
The correct choice is A:
A. The function is one-to-one. [tex]\( f^{-1}(x) = \frac{4 + 5x}{x}, x \neq 0 \)[/tex].
(b) Graph [tex]\( f \)[/tex] and [tex]\( f^{-1} \)[/tex] on the same axes.
1. Graph of [tex]\( f(x) = \frac{4}{x-5} \)[/tex]: This is a hyperbolic function with a vertical asymptote at [tex]\( x = 5 \)[/tex] and a horizontal asymptote at [tex]\( y = 0 \)[/tex].
2. Graph of [tex]\( f^{-1}(x) = \frac{4 + 5x}{x} \)[/tex]: This function will have different behavior due to the terms in the numerator and denominator. It's another rational function but with more complex asymptotes.
(c) Give the domain and range of [tex]\( f \)[/tex] and [tex]\( f^{-1} \)[/tex].
For [tex]\( f(x) = \frac{4}{x-5} \)[/tex]:
- Domain: All real numbers except [tex]\( x = 5 \)[/tex], as division by zero is undefined.
[tex]\[ \text{Domain of } f: (-\infty, 5) \cup (5, \infty) \][/tex]
- Range: All real numbers except [tex]\( y = 0 \)[/tex], as the function never outputs zero.
[tex]\[ \text{Range of } f: (-\infty, 0) \cup (0, \infty) \][/tex]
For [tex]\( f^{-1}(x) = \frac{4 + 5x}{x} \)[/tex]:
- Domain: All real numbers except [tex]\( x = 0 \)[/tex], as the function involves division by [tex]\( x \)[/tex].
[tex]\[ \text{Domain of } f^{-1}: (-\infty, 0) \cup (0, \infty) \][/tex]
- Range: All real numbers except [tex]\( y = 5 \)[/tex], since it is where the original function’s denominator would be zero.
[tex]\[ \text{Range of } f^{-1}: (-\infty, 5) \cup (5, \infty) \][/tex]
In conclusion:
- The function is one-to-one.
- The inverse function is [tex]\( f^{-1}(x) = \frac{4 + 5x}{x}, x \neq 0 \)[/tex].
- The graph of [tex]\( f \)[/tex] and [tex]\( f^{-1} \)[/tex] will show both as hyperbolic curves with respective asymptotic behaviors.
- The domain and range of both functions were specified.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.