Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve the equation [tex]\( x - \frac{7}{8} = 4x + \frac{1}{2} \)[/tex], we will follow these steps:
1. Isolate the variable on one side:
Start by moving the terms involving [tex]\( x \)[/tex] to one side of the equation and the constant terms to the opposite side. Let's subtract [tex]\( 4x \)[/tex] from both sides:
[tex]\[ x - \frac{7}{8} - 4x = \frac{1}{2} \][/tex]
Simplify the left side:
[tex]\[ -3x - \frac{7}{8} = \frac{1}{2} \][/tex]
2. Combine like terms involving constants:
Add [tex]\( \frac{7}{8} \)[/tex] to both sides to isolate the terms involving [tex]\( x \)[/tex] on one side:
[tex]\[ -3x = \frac{1}{2} + \frac{7}{8} \][/tex]
3. Find a common denominator to combine fractions:
The common denominator for [tex]\( \frac{1}{2} \)[/tex] and [tex]\( \frac{7}{8} \)[/tex] is 8. Therefore:
[tex]\[ \frac{1}{2} = \frac{4}{8} \][/tex]
Now, add these fractions:
[tex]\[ \frac{4}{8} + \frac{7}{8} = \frac{11}{8} \][/tex]
So the equation becomes:
[tex]\[ -3x = \frac{11}{8} \][/tex]
4. Solve for [tex]\( x \)[/tex]:
Divide both sides by -3 to isolate [tex]\( x \)[/tex]:
[tex]\[ x = \frac{\frac{11}{8}}{-3} \][/tex]
Simplifying this we get:
[tex]\[ x = \frac{11}{8} \cdot \frac{-1}{3} = \frac{-11}{24} \][/tex]
Therefore, the solution to the equation [tex]\( x - \frac{7}{8} = 4x + \frac{1}{2} \)[/tex] is:
[tex]\[ x = -\frac{11}{24} \][/tex]
1. Isolate the variable on one side:
Start by moving the terms involving [tex]\( x \)[/tex] to one side of the equation and the constant terms to the opposite side. Let's subtract [tex]\( 4x \)[/tex] from both sides:
[tex]\[ x - \frac{7}{8} - 4x = \frac{1}{2} \][/tex]
Simplify the left side:
[tex]\[ -3x - \frac{7}{8} = \frac{1}{2} \][/tex]
2. Combine like terms involving constants:
Add [tex]\( \frac{7}{8} \)[/tex] to both sides to isolate the terms involving [tex]\( x \)[/tex] on one side:
[tex]\[ -3x = \frac{1}{2} + \frac{7}{8} \][/tex]
3. Find a common denominator to combine fractions:
The common denominator for [tex]\( \frac{1}{2} \)[/tex] and [tex]\( \frac{7}{8} \)[/tex] is 8. Therefore:
[tex]\[ \frac{1}{2} = \frac{4}{8} \][/tex]
Now, add these fractions:
[tex]\[ \frac{4}{8} + \frac{7}{8} = \frac{11}{8} \][/tex]
So the equation becomes:
[tex]\[ -3x = \frac{11}{8} \][/tex]
4. Solve for [tex]\( x \)[/tex]:
Divide both sides by -3 to isolate [tex]\( x \)[/tex]:
[tex]\[ x = \frac{\frac{11}{8}}{-3} \][/tex]
Simplifying this we get:
[tex]\[ x = \frac{11}{8} \cdot \frac{-1}{3} = \frac{-11}{24} \][/tex]
Therefore, the solution to the equation [tex]\( x - \frac{7}{8} = 4x + \frac{1}{2} \)[/tex] is:
[tex]\[ x = -\frac{11}{24} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.