Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the domain and range of the logarithmic function [tex]\( f(x) = \log_7(x) \)[/tex], let's analyze the function and its inverse step-by-step.
### Domain of [tex]\( f(x) = \log_7(x) \)[/tex]
In general, the logarithmic function [tex]\(\log_b(x)\)[/tex] (where [tex]\(b > 1\)[/tex]) is defined only for positive real numbers [tex]\(x > 0\)[/tex]. For [tex]\( f(x) = \log_7(x)\)[/tex], this specific rule still applies:
1. Domain: The domain of [tex]\( f(x) = \log_7(x) \)[/tex] is the set of all positive real numbers. This can be written as:
[tex]\[ (0, \infty) \][/tex]
### Range of [tex]\( f(x) = \log_7(x) \)[/tex]
To determine the range, we consider the possible values that [tex]\( f(x) \)[/tex] can take.
1. The logarithmic function can produce any real number as output when applied to its domain. For instance:
- As [tex]\( x \)[/tex] approaches 0 from the right (i.e., [tex]\( x \to 0^+ \)[/tex]), [tex]\( \log_7(x) \)[/tex] goes to [tex]\( -\infty \)[/tex].
- As [tex]\( x \)[/tex] increases without bound (i.e., [tex]\( x \to \infty \)[/tex]), [tex]\( \log_7(x) \)[/tex] goes to [tex]\( \infty \)[/tex].
Therefore, the logarithmic function [tex]\( f(x) = \log_7(x) \)[/tex] can produce any real number.
2. Range: The range of [tex]\( f(x) = \log_7(x) \)[/tex] is the set of all real numbers. This can be written as:
[tex]\[ (-\infty, \infty) \][/tex]
### Inverse function [tex]\( f^{-1}(x) \)[/tex] of [tex]\( f(x) = \log_7(x) \)[/tex]
To further justify the domain and range of the logarithmic function, let's consider its inverse. The inverse function [tex]\( f^{-1}(x) \)[/tex] essentially reverses the effect of [tex]\( f(x) \)[/tex].
For [tex]\( f(x) = \log_7(x) \)[/tex], the inverse function [tex]\( f^{-1}(x) \)[/tex] is the exponential function with base 7, given by:
[tex]\[ f^{-1}(x) = 7^x \][/tex]
Analyzing the inverse function:
1. Domain of the Inverse Function [tex]\( f^{-1}(x) = 7^x \)[/tex]:
- The domain of [tex]\( f^{-1}(x) \)[/tex] is the set of all real numbers [tex]\( x \in \mathbb{R} \)[/tex], since you can exponentiate 7 raised to any real number.
2. Range of the Inverse Function [tex]\( f^{-1}(x) = 7^x \)[/tex]:
- The range of [tex]\( f^{-1}(x) = 7^x \)[/tex] is the set of positive real numbers, [tex]\( (0, \infty) \)[/tex], since [tex]\( 7^x \)[/tex] will always yield a positive result for any real number [tex]\( x \)[/tex].
Since the range of [tex]\( f^{-1}(x) \)[/tex] corresponds to the domain of [tex]\( f(x) \)[/tex] and vice versa, this analysis further confirms our initial determination:
- The domain of [tex]\( f(x) = \log_7(x) \)[/tex] is [tex]\( (0, \infty) \)[/tex].
- The range of [tex]\( f(x) = \log_7(x) \)[/tex] is [tex]\( (-\infty, \infty) \)[/tex].
In conclusion, we have:
[tex]\[ \text{Domain: } (0, \infty) \][/tex]
[tex]\[ \text{Range: } (-\infty, \infty) \][/tex]
### Domain of [tex]\( f(x) = \log_7(x) \)[/tex]
In general, the logarithmic function [tex]\(\log_b(x)\)[/tex] (where [tex]\(b > 1\)[/tex]) is defined only for positive real numbers [tex]\(x > 0\)[/tex]. For [tex]\( f(x) = \log_7(x)\)[/tex], this specific rule still applies:
1. Domain: The domain of [tex]\( f(x) = \log_7(x) \)[/tex] is the set of all positive real numbers. This can be written as:
[tex]\[ (0, \infty) \][/tex]
### Range of [tex]\( f(x) = \log_7(x) \)[/tex]
To determine the range, we consider the possible values that [tex]\( f(x) \)[/tex] can take.
1. The logarithmic function can produce any real number as output when applied to its domain. For instance:
- As [tex]\( x \)[/tex] approaches 0 from the right (i.e., [tex]\( x \to 0^+ \)[/tex]), [tex]\( \log_7(x) \)[/tex] goes to [tex]\( -\infty \)[/tex].
- As [tex]\( x \)[/tex] increases without bound (i.e., [tex]\( x \to \infty \)[/tex]), [tex]\( \log_7(x) \)[/tex] goes to [tex]\( \infty \)[/tex].
Therefore, the logarithmic function [tex]\( f(x) = \log_7(x) \)[/tex] can produce any real number.
2. Range: The range of [tex]\( f(x) = \log_7(x) \)[/tex] is the set of all real numbers. This can be written as:
[tex]\[ (-\infty, \infty) \][/tex]
### Inverse function [tex]\( f^{-1}(x) \)[/tex] of [tex]\( f(x) = \log_7(x) \)[/tex]
To further justify the domain and range of the logarithmic function, let's consider its inverse. The inverse function [tex]\( f^{-1}(x) \)[/tex] essentially reverses the effect of [tex]\( f(x) \)[/tex].
For [tex]\( f(x) = \log_7(x) \)[/tex], the inverse function [tex]\( f^{-1}(x) \)[/tex] is the exponential function with base 7, given by:
[tex]\[ f^{-1}(x) = 7^x \][/tex]
Analyzing the inverse function:
1. Domain of the Inverse Function [tex]\( f^{-1}(x) = 7^x \)[/tex]:
- The domain of [tex]\( f^{-1}(x) \)[/tex] is the set of all real numbers [tex]\( x \in \mathbb{R} \)[/tex], since you can exponentiate 7 raised to any real number.
2. Range of the Inverse Function [tex]\( f^{-1}(x) = 7^x \)[/tex]:
- The range of [tex]\( f^{-1}(x) = 7^x \)[/tex] is the set of positive real numbers, [tex]\( (0, \infty) \)[/tex], since [tex]\( 7^x \)[/tex] will always yield a positive result for any real number [tex]\( x \)[/tex].
Since the range of [tex]\( f^{-1}(x) \)[/tex] corresponds to the domain of [tex]\( f(x) \)[/tex] and vice versa, this analysis further confirms our initial determination:
- The domain of [tex]\( f(x) = \log_7(x) \)[/tex] is [tex]\( (0, \infty) \)[/tex].
- The range of [tex]\( f(x) = \log_7(x) \)[/tex] is [tex]\( (-\infty, \infty) \)[/tex].
In conclusion, we have:
[tex]\[ \text{Domain: } (0, \infty) \][/tex]
[tex]\[ \text{Range: } (-\infty, \infty) \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.