Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Sure, I'll guide you through the steps to factor the given expression by grouping.
We start with the expression:
[tex]\[ 8v + vu - 4v^2 - 2u. \][/tex]
To factor this by grouping, follow these steps:
1. Group the terms in pairs:
[tex]\[ 8v + vu - 4v^2 - 2u. \][/tex]
We can group them as follows:
[tex]\[ (8v + vu) - (4v^2 + 2u). \][/tex]
2. Factor out the greatest common factor (GCF) from each group:
- From the first group, [tex]\(8v + vu\)[/tex], the GCF is [tex]\(v\)[/tex]:
[tex]\[ 8v + vu = v(8 + u). \][/tex]
- From the second group, [tex]\(4v^2 + 2u\)[/tex], the GCF is [tex]\(2\)[/tex]:
[tex]\[ 4v^2 + 2u = 2(2v^2 + u). \][/tex]
Notice that we actually need to maintain the sign consistent while factoring, so we factor out [tex]\(-2\)[/tex] (because both terms are opposite in sign in the original expression):
[tex]\[ - (4v^2 + 2u) = -2(2v^2 + u). \][/tex]
Now we have:
[tex]\[ v(8 + u) - 2(2v^2 + u). \][/tex]
3. Look for a common binomial factor:
It seems there's an error in our grouping approach as it should give us a simpler factorable form. Let’s try grouping differently or another way:
Split and regroup terms to align for easier common factorization:
[tex]\[ 8v + vu - 4v^2 - 2u = 8v - 4v^2 + vu - 2u. \][/tex]
Group them as:
[tex]\[ (8v - 4v^2) + (vu - 2u). \][/tex]
4. Factor out the GCF from each group again:
- From [tex]\(8v - 4v^2\)[/tex], the GCF is [tex]\(4v\)[/tex]:
[tex]\[ 8v - 4v^2 = 4v(2 - v). \][/tex]
- From [tex]\(vu - 2u\)[/tex], the GCF is [tex]\(u\)[/tex]:
[tex]\[ vu - 2u = u(v - 2). \][/tex]
Now we have:
[tex]\[ 4v(2 - v) + u(v - 2). \][/tex]
5. Recognize the common factors (factoring involves noting a rearrangement and sign consistency):
Rewrite both groups:
[tex]\[ 4v(2 - v) + u(v - 2) \][/tex]
Align terms carefully noticing:
[tex]\[ 4v(2 - v) - u(2 - v) \text{, which simplifies factoring similar binomial.}\][/tex]
6. Simplify the expression:
Note the equivalent factor through commutation:
[tex]\[ (4v - u)(2 - v). \][/tex]
So the final factored form of the expression:
[tex]\[ 8v + vu - 4v^2 - 2u \][/tex]
is:
[tex]\[ (u - 4v)(v - 2). \][/tex]
We start with the expression:
[tex]\[ 8v + vu - 4v^2 - 2u. \][/tex]
To factor this by grouping, follow these steps:
1. Group the terms in pairs:
[tex]\[ 8v + vu - 4v^2 - 2u. \][/tex]
We can group them as follows:
[tex]\[ (8v + vu) - (4v^2 + 2u). \][/tex]
2. Factor out the greatest common factor (GCF) from each group:
- From the first group, [tex]\(8v + vu\)[/tex], the GCF is [tex]\(v\)[/tex]:
[tex]\[ 8v + vu = v(8 + u). \][/tex]
- From the second group, [tex]\(4v^2 + 2u\)[/tex], the GCF is [tex]\(2\)[/tex]:
[tex]\[ 4v^2 + 2u = 2(2v^2 + u). \][/tex]
Notice that we actually need to maintain the sign consistent while factoring, so we factor out [tex]\(-2\)[/tex] (because both terms are opposite in sign in the original expression):
[tex]\[ - (4v^2 + 2u) = -2(2v^2 + u). \][/tex]
Now we have:
[tex]\[ v(8 + u) - 2(2v^2 + u). \][/tex]
3. Look for a common binomial factor:
It seems there's an error in our grouping approach as it should give us a simpler factorable form. Let’s try grouping differently or another way:
Split and regroup terms to align for easier common factorization:
[tex]\[ 8v + vu - 4v^2 - 2u = 8v - 4v^2 + vu - 2u. \][/tex]
Group them as:
[tex]\[ (8v - 4v^2) + (vu - 2u). \][/tex]
4. Factor out the GCF from each group again:
- From [tex]\(8v - 4v^2\)[/tex], the GCF is [tex]\(4v\)[/tex]:
[tex]\[ 8v - 4v^2 = 4v(2 - v). \][/tex]
- From [tex]\(vu - 2u\)[/tex], the GCF is [tex]\(u\)[/tex]:
[tex]\[ vu - 2u = u(v - 2). \][/tex]
Now we have:
[tex]\[ 4v(2 - v) + u(v - 2). \][/tex]
5. Recognize the common factors (factoring involves noting a rearrangement and sign consistency):
Rewrite both groups:
[tex]\[ 4v(2 - v) + u(v - 2) \][/tex]
Align terms carefully noticing:
[tex]\[ 4v(2 - v) - u(2 - v) \text{, which simplifies factoring similar binomial.}\][/tex]
6. Simplify the expression:
Note the equivalent factor through commutation:
[tex]\[ (4v - u)(2 - v). \][/tex]
So the final factored form of the expression:
[tex]\[ 8v + vu - 4v^2 - 2u \][/tex]
is:
[tex]\[ (u - 4v)(v - 2). \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.