Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine which statement [tex]\( q \rightarrow p \)[/tex] represents, we need to understand the different forms of conditional statements involving [tex]\( p \)[/tex] and [tex]\( q \)[/tex]. Here is a detailed explanation:
1. Original Conditional Statement: The original conditional statement is formulated as [tex]\( p \rightarrow q \)[/tex]. This means "If [tex]\( p \)[/tex], then [tex]\( q \)[/tex]."
2. Inverse of the Original Conditional Statement: The inverse negates both the hypothesis and the conclusion of the original conditional statement, represented as [tex]\( \neg p \rightarrow \neg q \)[/tex]. This means "If not [tex]\( p \)[/tex], then not [tex]\( q \)[/tex]."
3. Converse of the Original Conditional Statement: The converse switches the hypothesis and the conclusion of the original conditional statement, represented as [tex]\( q \rightarrow p \)[/tex]. This means "If [tex]\( q \)[/tex], then [tex]\( p \)[/tex]."
4. Contrapositive of the Original Conditional Statement: The contrapositive switches and negates both the hypothesis and the conclusion of the original conditional statement, represented as [tex]\( \neg q \rightarrow \neg p \)[/tex]. This means "If not [tex]\( q \)[/tex], then not [tex]\( p \)[/tex]."
Given [tex]\( q \rightarrow p \)[/tex]:
- It switches the hypothesis [tex]\( p \)[/tex] and the conclusion [tex]\( q \)[/tex] of the original conditional statement [tex]\( p \rightarrow q \)[/tex].
Therefore, [tex]\( q \rightarrow p \)[/tex] is the converse of [tex]\( p \rightarrow q \)[/tex].
Answer: the converse of the original conditional statement
1. Original Conditional Statement: The original conditional statement is formulated as [tex]\( p \rightarrow q \)[/tex]. This means "If [tex]\( p \)[/tex], then [tex]\( q \)[/tex]."
2. Inverse of the Original Conditional Statement: The inverse negates both the hypothesis and the conclusion of the original conditional statement, represented as [tex]\( \neg p \rightarrow \neg q \)[/tex]. This means "If not [tex]\( p \)[/tex], then not [tex]\( q \)[/tex]."
3. Converse of the Original Conditional Statement: The converse switches the hypothesis and the conclusion of the original conditional statement, represented as [tex]\( q \rightarrow p \)[/tex]. This means "If [tex]\( q \)[/tex], then [tex]\( p \)[/tex]."
4. Contrapositive of the Original Conditional Statement: The contrapositive switches and negates both the hypothesis and the conclusion of the original conditional statement, represented as [tex]\( \neg q \rightarrow \neg p \)[/tex]. This means "If not [tex]\( q \)[/tex], then not [tex]\( p \)[/tex]."
Given [tex]\( q \rightarrow p \)[/tex]:
- It switches the hypothesis [tex]\( p \)[/tex] and the conclusion [tex]\( q \)[/tex] of the original conditional statement [tex]\( p \rightarrow q \)[/tex].
Therefore, [tex]\( q \rightarrow p \)[/tex] is the converse of [tex]\( p \rightarrow q \)[/tex].
Answer: the converse of the original conditional statement
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.