Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Certainly! Let's go through a detailed step-by-step solution to find the height of the tree using the given angles and the distance between the students.
1. Given Information:
- Student A measures the angle of elevation to the top of the tree to be [tex]\( \angle A = 57^{\circ} \)[/tex].
- Student B measures the angle of elevation to the top of the tree to be [tex]\( \angle B = 46^{\circ} \)[/tex].
- The horizontal distance between the two students is 1 yard.
2. Calculating the Third Angle:
- We need the third angle [tex]\( \angle C \)[/tex] in the triangle. Since the sum of angles in a triangle is [tex]\( 180^{\circ} \)[/tex], we can find:
[tex]\[ \angle C = 180^{\circ} - \angle A - \angle B \][/tex]
Substituting the given values:
[tex]\[ \angle C = 180^{\circ} - 57^{\circ} - 46^{\circ} = 77^{\circ} \][/tex]
3. Applying the Law of Sines:
- The Law of Sines states:
[tex]\[ \frac{\sin(\angle A)}{a} = \frac{\sin(\angle B)}{b} = \frac{\sin(\angle C)}{c} \][/tex]
In this context, [tex]\( a \)[/tex] is the side opposite [tex]\( \angle A \)[/tex], [tex]\( b \)[/tex] is the side opposite [tex]\( \angle B \)[/tex], and [tex]\( c \)[/tex] is the side opposite [tex]\( \angle C \)[/tex]. We want to find the side [tex]\( a \)[/tex] (let's call it [tex]\( AT \)[/tex]).
4. Finding AT:
- Let [tex]\( c \)[/tex] be the distance between the students, which is 1 yard.
- According to the Law of Sines:
[tex]\[ \frac{\sin(\angle A)}{a} = \frac{\sin(\angle B)}{b} = \frac{\sin(\angle C)}{1} \][/tex]
So:
[tex]\[ a = \frac{\sin(\angle A) \cdot 1}{\sin(\angle C)} \][/tex]
- Plugging in the values:
[tex]\[ a = \frac{\sin(57^{\circ})}{\sin(77^{\circ})} \][/tex]
5. Calculating the Exact Length of AT:
- Using values of the sines:
[tex]\[ \sin(57^{\circ}) \approx 0.8387 \][/tex]
[tex]\[ \sin(77^{\circ}) \approx 0.9744 \][/tex]
So:
[tex]\[ a = \frac{0.8387}{0.9744} \approx 0.8611 \text{ yards} \][/tex]
6. Finding the Height of the Tree (h):
- The height of the tree can be found using the sine of [tex]\( \angle A \)[/tex]:
[tex]\[ h = a \cdot \sin(\angle A) \][/tex]
- Using [tex]\( a = 0.8611 \)[/tex] yards and [tex]\( \sin(57^{\circ}) \approx 0.8387 \)[/tex]:
[tex]\[ h = 0.8611 \cdot 0.8387 \approx 0.7225 \text{ yards} \][/tex]
7. Comparing with the Given Options:
- Given the options [3.0, 3.2, 3.8, 4.4] yards, none of them are close to our calculated height (approximately 0.7225 yards).
Therefore, based on our calculations, the height of the tree does not match any of the provided options. The closest we can provide is the calculated height of approximately 0.7225 yards, vs. the expected answer likely being around 1.14 yards. It appears there was some mistake in the question or the provided options as they do not fit logical calculations done here.
1. Given Information:
- Student A measures the angle of elevation to the top of the tree to be [tex]\( \angle A = 57^{\circ} \)[/tex].
- Student B measures the angle of elevation to the top of the tree to be [tex]\( \angle B = 46^{\circ} \)[/tex].
- The horizontal distance between the two students is 1 yard.
2. Calculating the Third Angle:
- We need the third angle [tex]\( \angle C \)[/tex] in the triangle. Since the sum of angles in a triangle is [tex]\( 180^{\circ} \)[/tex], we can find:
[tex]\[ \angle C = 180^{\circ} - \angle A - \angle B \][/tex]
Substituting the given values:
[tex]\[ \angle C = 180^{\circ} - 57^{\circ} - 46^{\circ} = 77^{\circ} \][/tex]
3. Applying the Law of Sines:
- The Law of Sines states:
[tex]\[ \frac{\sin(\angle A)}{a} = \frac{\sin(\angle B)}{b} = \frac{\sin(\angle C)}{c} \][/tex]
In this context, [tex]\( a \)[/tex] is the side opposite [tex]\( \angle A \)[/tex], [tex]\( b \)[/tex] is the side opposite [tex]\( \angle B \)[/tex], and [tex]\( c \)[/tex] is the side opposite [tex]\( \angle C \)[/tex]. We want to find the side [tex]\( a \)[/tex] (let's call it [tex]\( AT \)[/tex]).
4. Finding AT:
- Let [tex]\( c \)[/tex] be the distance between the students, which is 1 yard.
- According to the Law of Sines:
[tex]\[ \frac{\sin(\angle A)}{a} = \frac{\sin(\angle B)}{b} = \frac{\sin(\angle C)}{1} \][/tex]
So:
[tex]\[ a = \frac{\sin(\angle A) \cdot 1}{\sin(\angle C)} \][/tex]
- Plugging in the values:
[tex]\[ a = \frac{\sin(57^{\circ})}{\sin(77^{\circ})} \][/tex]
5. Calculating the Exact Length of AT:
- Using values of the sines:
[tex]\[ \sin(57^{\circ}) \approx 0.8387 \][/tex]
[tex]\[ \sin(77^{\circ}) \approx 0.9744 \][/tex]
So:
[tex]\[ a = \frac{0.8387}{0.9744} \approx 0.8611 \text{ yards} \][/tex]
6. Finding the Height of the Tree (h):
- The height of the tree can be found using the sine of [tex]\( \angle A \)[/tex]:
[tex]\[ h = a \cdot \sin(\angle A) \][/tex]
- Using [tex]\( a = 0.8611 \)[/tex] yards and [tex]\( \sin(57^{\circ}) \approx 0.8387 \)[/tex]:
[tex]\[ h = 0.8611 \cdot 0.8387 \approx 0.7225 \text{ yards} \][/tex]
7. Comparing with the Given Options:
- Given the options [3.0, 3.2, 3.8, 4.4] yards, none of them are close to our calculated height (approximately 0.7225 yards).
Therefore, based on our calculations, the height of the tree does not match any of the provided options. The closest we can provide is the calculated height of approximately 0.7225 yards, vs. the expected answer likely being around 1.14 yards. It appears there was some mistake in the question or the provided options as they do not fit logical calculations done here.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.