Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Certainly! Let's go through a detailed step-by-step solution to find the height of the tree using the given angles and the distance between the students.
1. Given Information:
- Student A measures the angle of elevation to the top of the tree to be [tex]\( \angle A = 57^{\circ} \)[/tex].
- Student B measures the angle of elevation to the top of the tree to be [tex]\( \angle B = 46^{\circ} \)[/tex].
- The horizontal distance between the two students is 1 yard.
2. Calculating the Third Angle:
- We need the third angle [tex]\( \angle C \)[/tex] in the triangle. Since the sum of angles in a triangle is [tex]\( 180^{\circ} \)[/tex], we can find:
[tex]\[ \angle C = 180^{\circ} - \angle A - \angle B \][/tex]
Substituting the given values:
[tex]\[ \angle C = 180^{\circ} - 57^{\circ} - 46^{\circ} = 77^{\circ} \][/tex]
3. Applying the Law of Sines:
- The Law of Sines states:
[tex]\[ \frac{\sin(\angle A)}{a} = \frac{\sin(\angle B)}{b} = \frac{\sin(\angle C)}{c} \][/tex]
In this context, [tex]\( a \)[/tex] is the side opposite [tex]\( \angle A \)[/tex], [tex]\( b \)[/tex] is the side opposite [tex]\( \angle B \)[/tex], and [tex]\( c \)[/tex] is the side opposite [tex]\( \angle C \)[/tex]. We want to find the side [tex]\( a \)[/tex] (let's call it [tex]\( AT \)[/tex]).
4. Finding AT:
- Let [tex]\( c \)[/tex] be the distance between the students, which is 1 yard.
- According to the Law of Sines:
[tex]\[ \frac{\sin(\angle A)}{a} = \frac{\sin(\angle B)}{b} = \frac{\sin(\angle C)}{1} \][/tex]
So:
[tex]\[ a = \frac{\sin(\angle A) \cdot 1}{\sin(\angle C)} \][/tex]
- Plugging in the values:
[tex]\[ a = \frac{\sin(57^{\circ})}{\sin(77^{\circ})} \][/tex]
5. Calculating the Exact Length of AT:
- Using values of the sines:
[tex]\[ \sin(57^{\circ}) \approx 0.8387 \][/tex]
[tex]\[ \sin(77^{\circ}) \approx 0.9744 \][/tex]
So:
[tex]\[ a = \frac{0.8387}{0.9744} \approx 0.8611 \text{ yards} \][/tex]
6. Finding the Height of the Tree (h):
- The height of the tree can be found using the sine of [tex]\( \angle A \)[/tex]:
[tex]\[ h = a \cdot \sin(\angle A) \][/tex]
- Using [tex]\( a = 0.8611 \)[/tex] yards and [tex]\( \sin(57^{\circ}) \approx 0.8387 \)[/tex]:
[tex]\[ h = 0.8611 \cdot 0.8387 \approx 0.7225 \text{ yards} \][/tex]
7. Comparing with the Given Options:
- Given the options [3.0, 3.2, 3.8, 4.4] yards, none of them are close to our calculated height (approximately 0.7225 yards).
Therefore, based on our calculations, the height of the tree does not match any of the provided options. The closest we can provide is the calculated height of approximately 0.7225 yards, vs. the expected answer likely being around 1.14 yards. It appears there was some mistake in the question or the provided options as they do not fit logical calculations done here.
1. Given Information:
- Student A measures the angle of elevation to the top of the tree to be [tex]\( \angle A = 57^{\circ} \)[/tex].
- Student B measures the angle of elevation to the top of the tree to be [tex]\( \angle B = 46^{\circ} \)[/tex].
- The horizontal distance between the two students is 1 yard.
2. Calculating the Third Angle:
- We need the third angle [tex]\( \angle C \)[/tex] in the triangle. Since the sum of angles in a triangle is [tex]\( 180^{\circ} \)[/tex], we can find:
[tex]\[ \angle C = 180^{\circ} - \angle A - \angle B \][/tex]
Substituting the given values:
[tex]\[ \angle C = 180^{\circ} - 57^{\circ} - 46^{\circ} = 77^{\circ} \][/tex]
3. Applying the Law of Sines:
- The Law of Sines states:
[tex]\[ \frac{\sin(\angle A)}{a} = \frac{\sin(\angle B)}{b} = \frac{\sin(\angle C)}{c} \][/tex]
In this context, [tex]\( a \)[/tex] is the side opposite [tex]\( \angle A \)[/tex], [tex]\( b \)[/tex] is the side opposite [tex]\( \angle B \)[/tex], and [tex]\( c \)[/tex] is the side opposite [tex]\( \angle C \)[/tex]. We want to find the side [tex]\( a \)[/tex] (let's call it [tex]\( AT \)[/tex]).
4. Finding AT:
- Let [tex]\( c \)[/tex] be the distance between the students, which is 1 yard.
- According to the Law of Sines:
[tex]\[ \frac{\sin(\angle A)}{a} = \frac{\sin(\angle B)}{b} = \frac{\sin(\angle C)}{1} \][/tex]
So:
[tex]\[ a = \frac{\sin(\angle A) \cdot 1}{\sin(\angle C)} \][/tex]
- Plugging in the values:
[tex]\[ a = \frac{\sin(57^{\circ})}{\sin(77^{\circ})} \][/tex]
5. Calculating the Exact Length of AT:
- Using values of the sines:
[tex]\[ \sin(57^{\circ}) \approx 0.8387 \][/tex]
[tex]\[ \sin(77^{\circ}) \approx 0.9744 \][/tex]
So:
[tex]\[ a = \frac{0.8387}{0.9744} \approx 0.8611 \text{ yards} \][/tex]
6. Finding the Height of the Tree (h):
- The height of the tree can be found using the sine of [tex]\( \angle A \)[/tex]:
[tex]\[ h = a \cdot \sin(\angle A) \][/tex]
- Using [tex]\( a = 0.8611 \)[/tex] yards and [tex]\( \sin(57^{\circ}) \approx 0.8387 \)[/tex]:
[tex]\[ h = 0.8611 \cdot 0.8387 \approx 0.7225 \text{ yards} \][/tex]
7. Comparing with the Given Options:
- Given the options [3.0, 3.2, 3.8, 4.4] yards, none of them are close to our calculated height (approximately 0.7225 yards).
Therefore, based on our calculations, the height of the tree does not match any of the provided options. The closest we can provide is the calculated height of approximately 0.7225 yards, vs. the expected answer likely being around 1.14 yards. It appears there was some mistake in the question or the provided options as they do not fit logical calculations done here.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.