Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the correct inverse of the proposition [tex]\( p \rightarrow q \)[/tex], we need to check various logical scenarios involving [tex]\( p \)[/tex] and [tex]\( q \)[/tex].
Let's begin by defining our propositions:
- [tex]\( p \)[/tex]: [tex]\( x - 5 = 10 \)[/tex]
- [tex]\( q \)[/tex]: [tex]\( 4x + 1 = 61 \)[/tex]
First, let's find the values of [tex]\( x \)[/tex] that satisfy [tex]\( p \)[/tex] and [tex]\( q \)[/tex]:
1. Solving for [tex]\( p \)[/tex]:
[tex]\[ x - 5 = 10 \][/tex]
[tex]\[ x = 15 \][/tex]
2. Solving for [tex]\( q \)[/tex]:
[tex]\[ 4x + 1 = 61 \][/tex]
[tex]\[ 4x = 60 \][/tex]
[tex]\[ x = 15 \][/tex]
Both propositions are true if [tex]\( x = 15 \)[/tex].
Next, consider the statement [tex]\( p \rightarrow q \)[/tex]. This implication is logically equivalent to [tex]\( \neg p \lor q \)[/tex] (not [tex]\( p \)[/tex] or [tex]\( q \)[/tex]).
Now, let's determine the truth values for different conditions:
1. If [tex]\( p \)[/tex] is true and [tex]\( q \)[/tex] is true:
From the above solutions, we know that when [tex]\( x = 15 \)[/tex], both [tex]\( p \)[/tex] and [tex]\( q \)[/tex] are true:
[tex]\[ p: 15 - 5 = 10 \quad \text{(true)} \][/tex]
[tex]\[ q: 4 \cdot 15 + 1 = 61 \quad \text{(true)} \][/tex]
2. If [tex]\( x - 5 \neq 10 \)[/tex], then [tex]\( 4x + 1 \neq 61 \)[/tex]:
This statement would require that when [tex]\( p \)[/tex] is false ([tex]\( x \neq 15 \)[/tex]), then [tex]\( q \)[/tex] would also be false. However:
- Suppose [tex]\( x = 16 \)[/tex], then [tex]\( x - 5 = 11 \)[/tex] (false for [tex]\( p \)[/tex]), but [tex]\( 4 \cdot 16 + 1 = 65 \)[/tex] (false for [tex]\( q \)[/tex]).
- Suppose [tex]\( x = 14 \)[/tex], then [tex]\( x - 5 = 9 \)[/tex] (false for [tex]\( p \)[/tex]), but [tex]\( 4 \cdot 14 + 1 = 57 \)[/tex] (false for [tex]\( q \)[/tex]).
3. If [tex]\( 4x + 1 \neq 61 \)[/tex], then [tex]\( x - 5 \neq 10 \)[/tex]:
This statement requires that when [tex]\( q \)[/tex] is false, [tex]\( p \)[/tex] must also be false. Again, examining:
- If [tex]\( x = 16 \)[/tex], [tex]\( q \)[/tex] is false ([tex]\( 4 \cdot 16 + 1 = 65 \)[/tex]), and [tex]\( p \)[/tex] is false ([tex]\( x - 5 = 11 \)[/tex]).
- If [tex]\( x = 14 \)[/tex], [tex]\( q \)[/tex] is false ([tex]\( 4 \cdot 14 + 1 = 57 \)[/tex]), and [tex]\( p \)[/tex] is false ([tex]\( x - 5 = 9 \)[/tex]).
4. If [tex]\( x - 5 = 10 \)[/tex], then [tex]\( 4x + 1 = 61 \)[/tex]:
From the values of [tex]\( x = 15 \)[/tex], if [tex]\( p \)[/tex] is true, we see:
[tex]\[ p: 15 - 5 = 10 \quad \text{(true)} \][/tex]
[tex]\[ q: 4 \cdot 15 + 1 = 61 \quad \text{(true)} \][/tex]
5. If [tex]\( 4x + 1 = 61 \)[/tex], then [tex]\( x - 5 = 10 \)[/tex]:
Similarly, if [tex]\( q \)[/tex] is true (with [tex]\( x = 15 \)[/tex]), then:
[tex]\[ q: 4 \cdot 15 + 1 = 61 \quad \text{(true)} \][/tex]
[tex]\[ p: 15 - 5 = 10 \quad \text{(true)} \][/tex]
Given all of these conditions, the inverses of [tex]\( p \rightarrow q \)[/tex] are checked. From the results, we see that the true values for these propositions are:
- [tex]\( \text{If } x - 5 \neq 10, \text{ then } 4x + 1 \neq 61. \rightarrow False\)[/tex]
- [tex]\( \text{If } 4x + 1 \neq 61, \text{ then } x - 5 \neq 10. \rightarrow False\)[/tex]
- [tex]\( \text{If } x - 5 = 10, \text{ then } 4x + 1 = 61. \rightarrow False\)[/tex]
- [tex]\( \text{If } 4x + 1 = 61, \text{ then } x - 5 = 10. \rightarrow False\)[/tex]
Thus, the inverses all result in false, and none of these options hold true in deriving an inverse for [tex]\( p \rightarrow q \)[/tex].
Let's begin by defining our propositions:
- [tex]\( p \)[/tex]: [tex]\( x - 5 = 10 \)[/tex]
- [tex]\( q \)[/tex]: [tex]\( 4x + 1 = 61 \)[/tex]
First, let's find the values of [tex]\( x \)[/tex] that satisfy [tex]\( p \)[/tex] and [tex]\( q \)[/tex]:
1. Solving for [tex]\( p \)[/tex]:
[tex]\[ x - 5 = 10 \][/tex]
[tex]\[ x = 15 \][/tex]
2. Solving for [tex]\( q \)[/tex]:
[tex]\[ 4x + 1 = 61 \][/tex]
[tex]\[ 4x = 60 \][/tex]
[tex]\[ x = 15 \][/tex]
Both propositions are true if [tex]\( x = 15 \)[/tex].
Next, consider the statement [tex]\( p \rightarrow q \)[/tex]. This implication is logically equivalent to [tex]\( \neg p \lor q \)[/tex] (not [tex]\( p \)[/tex] or [tex]\( q \)[/tex]).
Now, let's determine the truth values for different conditions:
1. If [tex]\( p \)[/tex] is true and [tex]\( q \)[/tex] is true:
From the above solutions, we know that when [tex]\( x = 15 \)[/tex], both [tex]\( p \)[/tex] and [tex]\( q \)[/tex] are true:
[tex]\[ p: 15 - 5 = 10 \quad \text{(true)} \][/tex]
[tex]\[ q: 4 \cdot 15 + 1 = 61 \quad \text{(true)} \][/tex]
2. If [tex]\( x - 5 \neq 10 \)[/tex], then [tex]\( 4x + 1 \neq 61 \)[/tex]:
This statement would require that when [tex]\( p \)[/tex] is false ([tex]\( x \neq 15 \)[/tex]), then [tex]\( q \)[/tex] would also be false. However:
- Suppose [tex]\( x = 16 \)[/tex], then [tex]\( x - 5 = 11 \)[/tex] (false for [tex]\( p \)[/tex]), but [tex]\( 4 \cdot 16 + 1 = 65 \)[/tex] (false for [tex]\( q \)[/tex]).
- Suppose [tex]\( x = 14 \)[/tex], then [tex]\( x - 5 = 9 \)[/tex] (false for [tex]\( p \)[/tex]), but [tex]\( 4 \cdot 14 + 1 = 57 \)[/tex] (false for [tex]\( q \)[/tex]).
3. If [tex]\( 4x + 1 \neq 61 \)[/tex], then [tex]\( x - 5 \neq 10 \)[/tex]:
This statement requires that when [tex]\( q \)[/tex] is false, [tex]\( p \)[/tex] must also be false. Again, examining:
- If [tex]\( x = 16 \)[/tex], [tex]\( q \)[/tex] is false ([tex]\( 4 \cdot 16 + 1 = 65 \)[/tex]), and [tex]\( p \)[/tex] is false ([tex]\( x - 5 = 11 \)[/tex]).
- If [tex]\( x = 14 \)[/tex], [tex]\( q \)[/tex] is false ([tex]\( 4 \cdot 14 + 1 = 57 \)[/tex]), and [tex]\( p \)[/tex] is false ([tex]\( x - 5 = 9 \)[/tex]).
4. If [tex]\( x - 5 = 10 \)[/tex], then [tex]\( 4x + 1 = 61 \)[/tex]:
From the values of [tex]\( x = 15 \)[/tex], if [tex]\( p \)[/tex] is true, we see:
[tex]\[ p: 15 - 5 = 10 \quad \text{(true)} \][/tex]
[tex]\[ q: 4 \cdot 15 + 1 = 61 \quad \text{(true)} \][/tex]
5. If [tex]\( 4x + 1 = 61 \)[/tex], then [tex]\( x - 5 = 10 \)[/tex]:
Similarly, if [tex]\( q \)[/tex] is true (with [tex]\( x = 15 \)[/tex]), then:
[tex]\[ q: 4 \cdot 15 + 1 = 61 \quad \text{(true)} \][/tex]
[tex]\[ p: 15 - 5 = 10 \quad \text{(true)} \][/tex]
Given all of these conditions, the inverses of [tex]\( p \rightarrow q \)[/tex] are checked. From the results, we see that the true values for these propositions are:
- [tex]\( \text{If } x - 5 \neq 10, \text{ then } 4x + 1 \neq 61. \rightarrow False\)[/tex]
- [tex]\( \text{If } 4x + 1 \neq 61, \text{ then } x - 5 \neq 10. \rightarrow False\)[/tex]
- [tex]\( \text{If } x - 5 = 10, \text{ then } 4x + 1 = 61. \rightarrow False\)[/tex]
- [tex]\( \text{If } 4x + 1 = 61, \text{ then } x - 5 = 10. \rightarrow False\)[/tex]
Thus, the inverses all result in false, and none of these options hold true in deriving an inverse for [tex]\( p \rightarrow q \)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.