Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure! Let's break down the problem step by step.
### Part (a)
To find the number of hats needed to achieve a profit of [tex]$8000, we need to set \( P(x) \) equal to $[/tex]8000 and solve for [tex]\( x \)[/tex]. The given profit function is:
[tex]\[ P(x) = 20x - 6000 \][/tex]
We set this equal to [tex]$8000: \[ 20x - 6000 = 8000 \] Now, solve for \( x \): 1. Add 6000 to both sides of the equation: \[ 20x = 8000 + 6000 \] \[ 20x = 14000 \] 2. Divide both sides by 20: \[ x = \frac{14000}{20} \] \[ x = 700 \] So, producing and selling 700 hats will give a profit of $[/tex]8000.
### Part (b)
To avoid a loss, the profit must be at least zero. This means we need to find the number of hats [tex]\( x \)[/tex] for which [tex]\( P(x) = 0 \)[/tex]. Set the profit function equal to zero:
[tex]\[ 20x - 6000 = 0 \][/tex]
Now, solve for [tex]\( x \)[/tex]:
1. Add 6000 to both sides of the equation:
[tex]\[ 20x = 6000 \][/tex]
2. Divide both sides by 20:
[tex]\[ x = \frac{6000}{20} \][/tex]
[tex]\[ x = 300 \][/tex]
So, producing and selling at least 300 hats will avoid a loss.
### Summary
(a) Producing and selling 700 hats will give a profit of $8000.
(b) Producing and selling at least 300 hats will avoid a loss.
### Part (a)
To find the number of hats needed to achieve a profit of [tex]$8000, we need to set \( P(x) \) equal to $[/tex]8000 and solve for [tex]\( x \)[/tex]. The given profit function is:
[tex]\[ P(x) = 20x - 6000 \][/tex]
We set this equal to [tex]$8000: \[ 20x - 6000 = 8000 \] Now, solve for \( x \): 1. Add 6000 to both sides of the equation: \[ 20x = 8000 + 6000 \] \[ 20x = 14000 \] 2. Divide both sides by 20: \[ x = \frac{14000}{20} \] \[ x = 700 \] So, producing and selling 700 hats will give a profit of $[/tex]8000.
### Part (b)
To avoid a loss, the profit must be at least zero. This means we need to find the number of hats [tex]\( x \)[/tex] for which [tex]\( P(x) = 0 \)[/tex]. Set the profit function equal to zero:
[tex]\[ 20x - 6000 = 0 \][/tex]
Now, solve for [tex]\( x \)[/tex]:
1. Add 6000 to both sides of the equation:
[tex]\[ 20x = 6000 \][/tex]
2. Divide both sides by 20:
[tex]\[ x = \frac{6000}{20} \][/tex]
[tex]\[ x = 300 \][/tex]
So, producing and selling at least 300 hats will avoid a loss.
### Summary
(a) Producing and selling 700 hats will give a profit of $8000.
(b) Producing and selling at least 300 hats will avoid a loss.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.