Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Sure! Let's break down the problem step by step.
### Part (a)
To find the number of hats needed to achieve a profit of [tex]$8000, we need to set \( P(x) \) equal to $[/tex]8000 and solve for [tex]\( x \)[/tex]. The given profit function is:
[tex]\[ P(x) = 20x - 6000 \][/tex]
We set this equal to [tex]$8000: \[ 20x - 6000 = 8000 \] Now, solve for \( x \): 1. Add 6000 to both sides of the equation: \[ 20x = 8000 + 6000 \] \[ 20x = 14000 \] 2. Divide both sides by 20: \[ x = \frac{14000}{20} \] \[ x = 700 \] So, producing and selling 700 hats will give a profit of $[/tex]8000.
### Part (b)
To avoid a loss, the profit must be at least zero. This means we need to find the number of hats [tex]\( x \)[/tex] for which [tex]\( P(x) = 0 \)[/tex]. Set the profit function equal to zero:
[tex]\[ 20x - 6000 = 0 \][/tex]
Now, solve for [tex]\( x \)[/tex]:
1. Add 6000 to both sides of the equation:
[tex]\[ 20x = 6000 \][/tex]
2. Divide both sides by 20:
[tex]\[ x = \frac{6000}{20} \][/tex]
[tex]\[ x = 300 \][/tex]
So, producing and selling at least 300 hats will avoid a loss.
### Summary
(a) Producing and selling 700 hats will give a profit of $8000.
(b) Producing and selling at least 300 hats will avoid a loss.
### Part (a)
To find the number of hats needed to achieve a profit of [tex]$8000, we need to set \( P(x) \) equal to $[/tex]8000 and solve for [tex]\( x \)[/tex]. The given profit function is:
[tex]\[ P(x) = 20x - 6000 \][/tex]
We set this equal to [tex]$8000: \[ 20x - 6000 = 8000 \] Now, solve for \( x \): 1. Add 6000 to both sides of the equation: \[ 20x = 8000 + 6000 \] \[ 20x = 14000 \] 2. Divide both sides by 20: \[ x = \frac{14000}{20} \] \[ x = 700 \] So, producing and selling 700 hats will give a profit of $[/tex]8000.
### Part (b)
To avoid a loss, the profit must be at least zero. This means we need to find the number of hats [tex]\( x \)[/tex] for which [tex]\( P(x) = 0 \)[/tex]. Set the profit function equal to zero:
[tex]\[ 20x - 6000 = 0 \][/tex]
Now, solve for [tex]\( x \)[/tex]:
1. Add 6000 to both sides of the equation:
[tex]\[ 20x = 6000 \][/tex]
2. Divide both sides by 20:
[tex]\[ x = \frac{6000}{20} \][/tex]
[tex]\[ x = 300 \][/tex]
So, producing and selling at least 300 hats will avoid a loss.
### Summary
(a) Producing and selling 700 hats will give a profit of $8000.
(b) Producing and selling at least 300 hats will avoid a loss.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.