Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Certainly, let's walk through the process of finding the best fit linear function for the given data step-by-step.
### Given Data Points:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & 1 & 3 & 5 & 7 & 9 \\ \hline y & 4 & 9 & 14 & 19 & 24 \\ \hline \end{array} \][/tex]
### Steps to Find the Linear Function:
1. Calculate the Mean of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ \bar{x} = \frac{1 + 3 + 5 + 7 + 9}{5} = \frac{25}{5} = 5 \][/tex]
[tex]\[ \bar{y} = \frac{4 + 9 + 14 + 19 + 24}{5} = \frac{70}{5} = 14 \][/tex]
2. Compute the Slope (m) of the Line:
We use the formula for the slope [tex]\( m \)[/tex]:
[tex]\[ m = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} \][/tex]
Calculate the individual components:
[tex]\[ \sum (x_i - \bar{x})(y_i - \bar{y}) = (1 - 5)(4 - 14) + (3 - 5)(9 - 14) + (5 - 5)(14 - 14) + (7 - 5)(19 - 14) + (9 - 5)(24 - 14) \][/tex]
[tex]\[ = (-4)(-10) + (-2)(-5) + (0)(0) + (2)(5) + (4)(10) \][/tex]
[tex]\[ = 40 + 10 + 0 + 10 + 40 = 100 \][/tex]
[tex]\[ \sum (x_i - \bar{x})^2 = (1 - 5)^2 + (3 - 5)^2 + (5 - 5)^2 + (7 - 5)^2 + (9 - 5)^2 \][/tex]
[tex]\[ = (-4)^2 + (-2)^2 + (0)^2 + (2)^2 + (4)^2 \][/tex]
[tex]\[ = 16 + 4 + 0 + 4 + 16 = 40 \][/tex]
So, the slope [tex]\( m \)[/tex]:
[tex]\[ m = \frac{100}{40} = 2.5 \][/tex]
3. Compute the Y-intercept (b):
The y-intercept [tex]\( b \)[/tex] is found using the formula:
[tex]\[ b = \bar{y} - m \bar{x} \][/tex]
Substitute the values we have:
[tex]\[ b = 14 - 2.5 \times 5 \][/tex]
[tex]\[ b = 14 - 12.5 \][/tex]
[tex]\[ b = 1.5 \][/tex]
### Linear Function of the Data:
Given the slope ( [tex]\( m = 2.5 \)[/tex] ) and the y-intercept ( [tex]\( b = 1.5 \)[/tex] ), the linear function that best fits the data is:
[tex]\[ y = 2.5x + 1.5 \][/tex]
So, the best fit linear function is:
[tex]\[ y = 2.5x + 1.5 \][/tex]
### Given Data Points:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x & 1 & 3 & 5 & 7 & 9 \\ \hline y & 4 & 9 & 14 & 19 & 24 \\ \hline \end{array} \][/tex]
### Steps to Find the Linear Function:
1. Calculate the Mean of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ \bar{x} = \frac{1 + 3 + 5 + 7 + 9}{5} = \frac{25}{5} = 5 \][/tex]
[tex]\[ \bar{y} = \frac{4 + 9 + 14 + 19 + 24}{5} = \frac{70}{5} = 14 \][/tex]
2. Compute the Slope (m) of the Line:
We use the formula for the slope [tex]\( m \)[/tex]:
[tex]\[ m = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} \][/tex]
Calculate the individual components:
[tex]\[ \sum (x_i - \bar{x})(y_i - \bar{y}) = (1 - 5)(4 - 14) + (3 - 5)(9 - 14) + (5 - 5)(14 - 14) + (7 - 5)(19 - 14) + (9 - 5)(24 - 14) \][/tex]
[tex]\[ = (-4)(-10) + (-2)(-5) + (0)(0) + (2)(5) + (4)(10) \][/tex]
[tex]\[ = 40 + 10 + 0 + 10 + 40 = 100 \][/tex]
[tex]\[ \sum (x_i - \bar{x})^2 = (1 - 5)^2 + (3 - 5)^2 + (5 - 5)^2 + (7 - 5)^2 + (9 - 5)^2 \][/tex]
[tex]\[ = (-4)^2 + (-2)^2 + (0)^2 + (2)^2 + (4)^2 \][/tex]
[tex]\[ = 16 + 4 + 0 + 4 + 16 = 40 \][/tex]
So, the slope [tex]\( m \)[/tex]:
[tex]\[ m = \frac{100}{40} = 2.5 \][/tex]
3. Compute the Y-intercept (b):
The y-intercept [tex]\( b \)[/tex] is found using the formula:
[tex]\[ b = \bar{y} - m \bar{x} \][/tex]
Substitute the values we have:
[tex]\[ b = 14 - 2.5 \times 5 \][/tex]
[tex]\[ b = 14 - 12.5 \][/tex]
[tex]\[ b = 1.5 \][/tex]
### Linear Function of the Data:
Given the slope ( [tex]\( m = 2.5 \)[/tex] ) and the y-intercept ( [tex]\( b = 1.5 \)[/tex] ), the linear function that best fits the data is:
[tex]\[ y = 2.5x + 1.5 \][/tex]
So, the best fit linear function is:
[tex]\[ y = 2.5x + 1.5 \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.