Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure! Let's create a linear model for the given data points.
To find the linear model [tex]\( y = mx + b \)[/tex], we need to determine the slope ([tex]\( m \)[/tex]) and the y-intercept ([tex]\( b \)[/tex]). Here is the step-by-step solution:
### Step 1: List the data points
We have the following data points:
- [tex]\( (7, 4) \)[/tex]
- [tex]\( (10, 16) \)[/tex]
- [tex]\( (13, 21) \)[/tex]
- [tex]\( (16, 29) \)[/tex]
### Step 2: Calculate the slope ([tex]\( m \)[/tex])
The formula for the slope [tex]\( m \)[/tex] is given by:
[tex]\[ m = \frac{n(\sum xy) - (\sum x)(\sum y)}{n(\sum x^2) - (\sum x)^2} \][/tex]
Where:
- [tex]\( n \)[/tex] is the number of data points
- [tex]\( \sum xy \)[/tex] is the sum of the product of each x and y
- [tex]\( \sum x \)[/tex] is the sum of all x values
- [tex]\( \sum y \)[/tex] is the sum of all y values
- [tex]\( \sum x^2 \)[/tex] is the sum of the squares of all x values
First, we compute these values:
[tex]\[ \begin{aligned} & x = [7, 10, 13, 16] \\ & y = [4, 16, 21, 29] \\ & n = 4 \\ & \sum x = 7 + 10 + 13 + 16 = 46 \\ & \sum y = 4 + 16 + 21 + 29 = 70 \\ & \sum xy = (7 \cdot 4) + (10 \cdot 16) + (13 \cdot 21) + (16 \cdot 29) = 28 + 160 + 273 + 464 = 925 \\ & \sum x^2 = (7^2) + (10^2) + (13^2) + (16^2) = 49 + 100 + 169 + 256 = 574 \end{aligned} \][/tex]
Now, using the slope formula:
[tex]\[ m = \frac{4(925) - (46)(70)}{4(574) - (46)^2} = \frac{3700 - 3220}{2296 - 2116} = \frac{480}{180} = 2.667 \][/tex]
### Step 3: Calculate the y-intercept ([tex]\( b \)[/tex])
The formula for the y-intercept is:
[tex]\[ b = \frac{\sum y - m (\sum x)}{n} \][/tex]
Substituting the known values and the calculated slope:
[tex]\[ b = \frac{70 - 2.667 \times 46}{4} = \frac{70 - 122.682}{4} = \frac{-52.682}{4} = -13.171 \][/tex]
### Step 4: Write the linear model
The linear model [tex]\( y = mx + b \)[/tex] is:
[tex]\[ y = 2.667x - 13.171 \][/tex]
So, the linear model for the data is:
[tex]\[ y = 2.667x - 13.171 \][/tex]
Note that the values are rounded to three decimal places, as specified.
To find the linear model [tex]\( y = mx + b \)[/tex], we need to determine the slope ([tex]\( m \)[/tex]) and the y-intercept ([tex]\( b \)[/tex]). Here is the step-by-step solution:
### Step 1: List the data points
We have the following data points:
- [tex]\( (7, 4) \)[/tex]
- [tex]\( (10, 16) \)[/tex]
- [tex]\( (13, 21) \)[/tex]
- [tex]\( (16, 29) \)[/tex]
### Step 2: Calculate the slope ([tex]\( m \)[/tex])
The formula for the slope [tex]\( m \)[/tex] is given by:
[tex]\[ m = \frac{n(\sum xy) - (\sum x)(\sum y)}{n(\sum x^2) - (\sum x)^2} \][/tex]
Where:
- [tex]\( n \)[/tex] is the number of data points
- [tex]\( \sum xy \)[/tex] is the sum of the product of each x and y
- [tex]\( \sum x \)[/tex] is the sum of all x values
- [tex]\( \sum y \)[/tex] is the sum of all y values
- [tex]\( \sum x^2 \)[/tex] is the sum of the squares of all x values
First, we compute these values:
[tex]\[ \begin{aligned} & x = [7, 10, 13, 16] \\ & y = [4, 16, 21, 29] \\ & n = 4 \\ & \sum x = 7 + 10 + 13 + 16 = 46 \\ & \sum y = 4 + 16 + 21 + 29 = 70 \\ & \sum xy = (7 \cdot 4) + (10 \cdot 16) + (13 \cdot 21) + (16 \cdot 29) = 28 + 160 + 273 + 464 = 925 \\ & \sum x^2 = (7^2) + (10^2) + (13^2) + (16^2) = 49 + 100 + 169 + 256 = 574 \end{aligned} \][/tex]
Now, using the slope formula:
[tex]\[ m = \frac{4(925) - (46)(70)}{4(574) - (46)^2} = \frac{3700 - 3220}{2296 - 2116} = \frac{480}{180} = 2.667 \][/tex]
### Step 3: Calculate the y-intercept ([tex]\( b \)[/tex])
The formula for the y-intercept is:
[tex]\[ b = \frac{\sum y - m (\sum x)}{n} \][/tex]
Substituting the known values and the calculated slope:
[tex]\[ b = \frac{70 - 2.667 \times 46}{4} = \frac{70 - 122.682}{4} = \frac{-52.682}{4} = -13.171 \][/tex]
### Step 4: Write the linear model
The linear model [tex]\( y = mx + b \)[/tex] is:
[tex]\[ y = 2.667x - 13.171 \][/tex]
So, the linear model for the data is:
[tex]\[ y = 2.667x - 13.171 \][/tex]
Note that the values are rounded to three decimal places, as specified.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.