Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To model the data using a linear function, we need to find the slope and the intercept of the line [tex]\( f(x) = mx + b \)[/tex], where [tex]\( x \)[/tex] is the number of years after 2000 and [tex]\( f(x) \)[/tex] is the population in millions.
Given the data points:
- Year 2000 (which corresponds to [tex]\( x = 0 \)[/tex]) has a population of 2795 million.
- Year 2010 ([tex]\( x = 10 \)[/tex]) has a population of 3059 million.
- Year 2020 ([tex]\( x = 20 \)[/tex]) has a population of 3348 million.
- Year 2030 ([tex]\( x = 30 \)[/tex]) has a population of 3568 million.
- Year 2040 ([tex]\( x = 40 \)[/tex]) has a population of 3829 million.
- Year 2050 ([tex]\( x = 50 \)[/tex]) has a population of 4134 million.
- Year 2060 ([tex]\( x = 60 \)[/tex]) has a population of 4375 million.
- Year 2070 ([tex]\( x = 70 \)[/tex]) has a population of 4652 million.
- Year 2080 ([tex]\( x = 80 \)[/tex]) has a population of 5056 million.
- Year 2100 ([tex]\( x = 100 \)[/tex]) has a population of 5749 million.
By performing linear regression on these data points, we find that the slope [tex]\( m \)[/tex] and the intercept [tex]\( b \)[/tex] are:
[tex]\[ m \approx 28.786 \, \text{(rounded to three decimal places)} \][/tex]
[tex]\[ b \approx 2732.357 \, \text{(rounded to three decimal places)} \][/tex]
Therefore, the linear function that models the data is:
[tex]\[ f(x) = 28.786x + 2732.357 \][/tex]
So the function [tex]\( f(x) \)[/tex] that models the population in millions [tex]\( x \)[/tex] years after 2000 is:
[tex]\[ f(x) = 28.786x + 2732.357 \][/tex]
This function can now be used to estimate the population at any given year after 2000.
Given the data points:
- Year 2000 (which corresponds to [tex]\( x = 0 \)[/tex]) has a population of 2795 million.
- Year 2010 ([tex]\( x = 10 \)[/tex]) has a population of 3059 million.
- Year 2020 ([tex]\( x = 20 \)[/tex]) has a population of 3348 million.
- Year 2030 ([tex]\( x = 30 \)[/tex]) has a population of 3568 million.
- Year 2040 ([tex]\( x = 40 \)[/tex]) has a population of 3829 million.
- Year 2050 ([tex]\( x = 50 \)[/tex]) has a population of 4134 million.
- Year 2060 ([tex]\( x = 60 \)[/tex]) has a population of 4375 million.
- Year 2070 ([tex]\( x = 70 \)[/tex]) has a population of 4652 million.
- Year 2080 ([tex]\( x = 80 \)[/tex]) has a population of 5056 million.
- Year 2100 ([tex]\( x = 100 \)[/tex]) has a population of 5749 million.
By performing linear regression on these data points, we find that the slope [tex]\( m \)[/tex] and the intercept [tex]\( b \)[/tex] are:
[tex]\[ m \approx 28.786 \, \text{(rounded to three decimal places)} \][/tex]
[tex]\[ b \approx 2732.357 \, \text{(rounded to three decimal places)} \][/tex]
Therefore, the linear function that models the data is:
[tex]\[ f(x) = 28.786x + 2732.357 \][/tex]
So the function [tex]\( f(x) \)[/tex] that models the population in millions [tex]\( x \)[/tex] years after 2000 is:
[tex]\[ f(x) = 28.786x + 2732.357 \][/tex]
This function can now be used to estimate the population at any given year after 2000.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.