Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the domain of the function [tex]\( f(x) = \sqrt{x+5} - 1 \)[/tex], we need to ensure that the expression inside the square root is non-negative. This is because the square root function is only defined for non-negative numbers.
Let's analyze the expression [tex]\( x + 5 \)[/tex]:
1. Non-Negativity Condition:
[tex]\[ x + 5 \geq 0 \][/tex]
2. Solving for [tex]\( x \)[/tex]:
[tex]\[ x + 5 \geq 0 \\ x \geq -5 \][/tex]
3. Interpreting the Result:
- The inequality [tex]\( x \geq -5 \)[/tex] means that [tex]\( x \)[/tex] can be any number greater than or equal to [tex]\(-5\)[/tex].
4. Domain in Interval Notation:
- The domain includes all [tex]\( x \)[/tex] values that are greater than or equal to [tex]\(-5\)[/tex].
- In interval notation, this is written as:
[tex]\[ [-5, \infty) \][/tex]
Therefore, the correct domain of the function [tex]\( f(x) = \sqrt{x+5} - 1 \)[/tex] written in interval notation is:
[tex]\[ \boxed{[-5, \infty)} \][/tex]
Let's analyze the expression [tex]\( x + 5 \)[/tex]:
1. Non-Negativity Condition:
[tex]\[ x + 5 \geq 0 \][/tex]
2. Solving for [tex]\( x \)[/tex]:
[tex]\[ x + 5 \geq 0 \\ x \geq -5 \][/tex]
3. Interpreting the Result:
- The inequality [tex]\( x \geq -5 \)[/tex] means that [tex]\( x \)[/tex] can be any number greater than or equal to [tex]\(-5\)[/tex].
4. Domain in Interval Notation:
- The domain includes all [tex]\( x \)[/tex] values that are greater than or equal to [tex]\(-5\)[/tex].
- In interval notation, this is written as:
[tex]\[ [-5, \infty) \][/tex]
Therefore, the correct domain of the function [tex]\( f(x) = \sqrt{x+5} - 1 \)[/tex] written in interval notation is:
[tex]\[ \boxed{[-5, \infty)} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.