At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the transformations needed to change the parent cosine function [tex]\( y = \cos(x) \)[/tex] to [tex]\( y = 3 \cos(10(x - \pi)) \)[/tex], we need to break down the transformations step by step:
1. Vertical Stretch/Compression:
- The parent function [tex]\( y = \cos(x) \)[/tex] is modified to [tex]\( y = 3 \cos(x) \)[/tex].
- The coefficient 3 in front of the cosine function indicates a vertical stretch by a factor of 3.
2. Horizontal Compression/Stretch:
- The argument inside the cosine function [tex]\( x \)[/tex] is modified to [tex]\( 10(x - \pi) \)[/tex].
- The coefficient 10 indicates a horizontal compression. The period of the parent cosine function is [tex]\( 2\pi \)[/tex]. When we multiply [tex]\( x \)[/tex] by 10, the period becomes:
[tex]\[ \text{New Period} = \frac{2\pi}{10} = \frac{\pi}{5} \][/tex]
3. Phase Shift:
- The argument [tex]\( x \)[/tex] is modified to [tex]\( x - \pi \)[/tex].
- The subtraction of [tex]\( \pi \)[/tex] indicates a phase shift. Specifically, it shifts the graph [tex]\( \pi \)[/tex] units to the right.
Given these transformations, the correct option is:
- Vertical stretch of 3
- Horizontal compression to a period of [tex]\(\frac{\pi}{5}\)[/tex]
- Phase shift of [tex]\(\pi\)[/tex] units to the right
Therefore, the correct answer is:
Vertical stretch of 3, horizontal compression to a period of [tex]\( \frac{\pi}{5} \)[/tex], phase shift of [tex]\( \pi \)[/tex] units to the right
This matches choice number two:
- Vertical stretch of 3 , horizontal compression to a period of [tex]\( \frac{\pi}{5} \)[/tex] , phase shift of [tex]\( \pi \)[/tex] units to the right
1. Vertical Stretch/Compression:
- The parent function [tex]\( y = \cos(x) \)[/tex] is modified to [tex]\( y = 3 \cos(x) \)[/tex].
- The coefficient 3 in front of the cosine function indicates a vertical stretch by a factor of 3.
2. Horizontal Compression/Stretch:
- The argument inside the cosine function [tex]\( x \)[/tex] is modified to [tex]\( 10(x - \pi) \)[/tex].
- The coefficient 10 indicates a horizontal compression. The period of the parent cosine function is [tex]\( 2\pi \)[/tex]. When we multiply [tex]\( x \)[/tex] by 10, the period becomes:
[tex]\[ \text{New Period} = \frac{2\pi}{10} = \frac{\pi}{5} \][/tex]
3. Phase Shift:
- The argument [tex]\( x \)[/tex] is modified to [tex]\( x - \pi \)[/tex].
- The subtraction of [tex]\( \pi \)[/tex] indicates a phase shift. Specifically, it shifts the graph [tex]\( \pi \)[/tex] units to the right.
Given these transformations, the correct option is:
- Vertical stretch of 3
- Horizontal compression to a period of [tex]\(\frac{\pi}{5}\)[/tex]
- Phase shift of [tex]\(\pi\)[/tex] units to the right
Therefore, the correct answer is:
Vertical stretch of 3, horizontal compression to a period of [tex]\( \frac{\pi}{5} \)[/tex], phase shift of [tex]\( \pi \)[/tex] units to the right
This matches choice number two:
- Vertical stretch of 3 , horizontal compression to a period of [tex]\( \frac{\pi}{5} \)[/tex] , phase shift of [tex]\( \pi \)[/tex] units to the right
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.