Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the angle [tex]\( s \)[/tex] in the interval [tex]\(\left[0, \frac{\pi}{2}\right]\)[/tex] that satisfies [tex]\(\cos(s) = 0.7948\)[/tex], follow these steps:
1. Understand the Problem:
Given the cosine value, you need to find the corresponding angle [tex]\( s \)[/tex]. Since the cosine function is involved, use the inverse cosine function, which is commonly denoted as [tex]\(\arccos\)[/tex] or [tex]\(\operatorname{acos}\)[/tex].
2. Apply the Inverse Cosine Function:
To find [tex]\( s \)[/tex], apply the arccos function to the cosine value:
[tex]\[ s = \arccos(0.7948) \][/tex]
3. Obtain the Numerical Value:
Use a calculator to find the numerical value of [tex]\(\arccos(0.7948)\)[/tex]. The value of [tex]\( s \)[/tex] approximately is:
[tex]\[ s \approx 0.6521 \][/tex]
4. Round the Result:
Ensure that the result is rounded to four decimal places, which is already confirmed above.
Thus, the value of [tex]\( s \)[/tex] that satisfies the given equation and is within the interval [tex]\(\left[0, \frac{\pi}{2}\right]\)[/tex] is:
[tex]\[ s = 0.6521 \quad \text{radians} \][/tex]
1. Understand the Problem:
Given the cosine value, you need to find the corresponding angle [tex]\( s \)[/tex]. Since the cosine function is involved, use the inverse cosine function, which is commonly denoted as [tex]\(\arccos\)[/tex] or [tex]\(\operatorname{acos}\)[/tex].
2. Apply the Inverse Cosine Function:
To find [tex]\( s \)[/tex], apply the arccos function to the cosine value:
[tex]\[ s = \arccos(0.7948) \][/tex]
3. Obtain the Numerical Value:
Use a calculator to find the numerical value of [tex]\(\arccos(0.7948)\)[/tex]. The value of [tex]\( s \)[/tex] approximately is:
[tex]\[ s \approx 0.6521 \][/tex]
4. Round the Result:
Ensure that the result is rounded to four decimal places, which is already confirmed above.
Thus, the value of [tex]\( s \)[/tex] that satisfies the given equation and is within the interval [tex]\(\left[0, \frac{\pi}{2}\right]\)[/tex] is:
[tex]\[ s = 0.6521 \quad \text{radians} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.