At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the angle [tex]\( s \)[/tex] in the interval [tex]\(\left[0, \frac{\pi}{2}\right]\)[/tex] that satisfies [tex]\(\cos(s) = 0.7948\)[/tex], follow these steps:
1. Understand the Problem:
Given the cosine value, you need to find the corresponding angle [tex]\( s \)[/tex]. Since the cosine function is involved, use the inverse cosine function, which is commonly denoted as [tex]\(\arccos\)[/tex] or [tex]\(\operatorname{acos}\)[/tex].
2. Apply the Inverse Cosine Function:
To find [tex]\( s \)[/tex], apply the arccos function to the cosine value:
[tex]\[ s = \arccos(0.7948) \][/tex]
3. Obtain the Numerical Value:
Use a calculator to find the numerical value of [tex]\(\arccos(0.7948)\)[/tex]. The value of [tex]\( s \)[/tex] approximately is:
[tex]\[ s \approx 0.6521 \][/tex]
4. Round the Result:
Ensure that the result is rounded to four decimal places, which is already confirmed above.
Thus, the value of [tex]\( s \)[/tex] that satisfies the given equation and is within the interval [tex]\(\left[0, \frac{\pi}{2}\right]\)[/tex] is:
[tex]\[ s = 0.6521 \quad \text{radians} \][/tex]
1. Understand the Problem:
Given the cosine value, you need to find the corresponding angle [tex]\( s \)[/tex]. Since the cosine function is involved, use the inverse cosine function, which is commonly denoted as [tex]\(\arccos\)[/tex] or [tex]\(\operatorname{acos}\)[/tex].
2. Apply the Inverse Cosine Function:
To find [tex]\( s \)[/tex], apply the arccos function to the cosine value:
[tex]\[ s = \arccos(0.7948) \][/tex]
3. Obtain the Numerical Value:
Use a calculator to find the numerical value of [tex]\(\arccos(0.7948)\)[/tex]. The value of [tex]\( s \)[/tex] approximately is:
[tex]\[ s \approx 0.6521 \][/tex]
4. Round the Result:
Ensure that the result is rounded to four decimal places, which is already confirmed above.
Thus, the value of [tex]\( s \)[/tex] that satisfies the given equation and is within the interval [tex]\(\left[0, \frac{\pi}{2}\right]\)[/tex] is:
[tex]\[ s = 0.6521 \quad \text{radians} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.