Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the angle [tex]\( s \)[/tex] in the interval [tex]\(\left[0, \frac{\pi}{2}\right]\)[/tex] that satisfies [tex]\(\cos(s) = 0.7948\)[/tex], follow these steps:
1. Understand the Problem:
Given the cosine value, you need to find the corresponding angle [tex]\( s \)[/tex]. Since the cosine function is involved, use the inverse cosine function, which is commonly denoted as [tex]\(\arccos\)[/tex] or [tex]\(\operatorname{acos}\)[/tex].
2. Apply the Inverse Cosine Function:
To find [tex]\( s \)[/tex], apply the arccos function to the cosine value:
[tex]\[ s = \arccos(0.7948) \][/tex]
3. Obtain the Numerical Value:
Use a calculator to find the numerical value of [tex]\(\arccos(0.7948)\)[/tex]. The value of [tex]\( s \)[/tex] approximately is:
[tex]\[ s \approx 0.6521 \][/tex]
4. Round the Result:
Ensure that the result is rounded to four decimal places, which is already confirmed above.
Thus, the value of [tex]\( s \)[/tex] that satisfies the given equation and is within the interval [tex]\(\left[0, \frac{\pi}{2}\right]\)[/tex] is:
[tex]\[ s = 0.6521 \quad \text{radians} \][/tex]
1. Understand the Problem:
Given the cosine value, you need to find the corresponding angle [tex]\( s \)[/tex]. Since the cosine function is involved, use the inverse cosine function, which is commonly denoted as [tex]\(\arccos\)[/tex] or [tex]\(\operatorname{acos}\)[/tex].
2. Apply the Inverse Cosine Function:
To find [tex]\( s \)[/tex], apply the arccos function to the cosine value:
[tex]\[ s = \arccos(0.7948) \][/tex]
3. Obtain the Numerical Value:
Use a calculator to find the numerical value of [tex]\(\arccos(0.7948)\)[/tex]. The value of [tex]\( s \)[/tex] approximately is:
[tex]\[ s \approx 0.6521 \][/tex]
4. Round the Result:
Ensure that the result is rounded to four decimal places, which is already confirmed above.
Thus, the value of [tex]\( s \)[/tex] that satisfies the given equation and is within the interval [tex]\(\left[0, \frac{\pi}{2}\right]\)[/tex] is:
[tex]\[ s = 0.6521 \quad \text{radians} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.