Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find a value of [tex]\( s \)[/tex] in the interval [tex]\([0, \frac{\pi}{2}]\)[/tex] that satisfies [tex]\(\csc s = 1.4719\)[/tex], follow these steps:
1. Understanding the cosecant function:
The cosecant function is the reciprocal of the sine function. Therefore, given [tex]\(\csc s = 1.4719\)[/tex], it implies:
[tex]\[ \sin s = \frac{1}{\csc s} \][/tex]
2. Calculate [tex]\(\sin s\)[/tex]:
Substitute the given value of [tex]\(\csc s\)[/tex]:
[tex]\[ \sin s = \frac{1}{1.4719} \][/tex]
Compute this value:
[tex]\[ \sin s \approx 0.6796 \][/tex]
3. Determine [tex]\( s \)[/tex] from [tex]\(\sin s\)[/tex]:
We need to find the angle [tex]\( s \)[/tex] in the interval [tex]\([0, \frac{\pi}{2}]\)[/tex] whose sine is approximately 0.6796. To do this, we use the inverse sine function (arcsine), which gives us an angle for a given sine value:
[tex]\[ s = \arcsin(0.6796) \][/tex]
Calculate this value:
[tex]\[ s \approx 0.746936424347283 \][/tex]
4. Verify the interval:
We need to ensure that the computed value of [tex]\( s \)[/tex] lies within the specified interval [tex]\([0, \frac{\pi}{2}]\)[/tex]. Since:
[tex]\[ 0 \leq 0.746936424347283 \leq \frac{\pi}{2} \approx 1.5708 \][/tex]
The value of [tex]\( s \)[/tex] lies within the given interval.
Thus, the value of [tex]\( s \)[/tex] that satisfies [tex]\(\csc s = 1.4719\)[/tex] in the interval [tex]\([0, \frac{\pi}{2}]\)[/tex] is approximately:
[tex]\[ s \approx 0.746936424347283 \][/tex]
1. Understanding the cosecant function:
The cosecant function is the reciprocal of the sine function. Therefore, given [tex]\(\csc s = 1.4719\)[/tex], it implies:
[tex]\[ \sin s = \frac{1}{\csc s} \][/tex]
2. Calculate [tex]\(\sin s\)[/tex]:
Substitute the given value of [tex]\(\csc s\)[/tex]:
[tex]\[ \sin s = \frac{1}{1.4719} \][/tex]
Compute this value:
[tex]\[ \sin s \approx 0.6796 \][/tex]
3. Determine [tex]\( s \)[/tex] from [tex]\(\sin s\)[/tex]:
We need to find the angle [tex]\( s \)[/tex] in the interval [tex]\([0, \frac{\pi}{2}]\)[/tex] whose sine is approximately 0.6796. To do this, we use the inverse sine function (arcsine), which gives us an angle for a given sine value:
[tex]\[ s = \arcsin(0.6796) \][/tex]
Calculate this value:
[tex]\[ s \approx 0.746936424347283 \][/tex]
4. Verify the interval:
We need to ensure that the computed value of [tex]\( s \)[/tex] lies within the specified interval [tex]\([0, \frac{\pi}{2}]\)[/tex]. Since:
[tex]\[ 0 \leq 0.746936424347283 \leq \frac{\pi}{2} \approx 1.5708 \][/tex]
The value of [tex]\( s \)[/tex] lies within the given interval.
Thus, the value of [tex]\( s \)[/tex] that satisfies [tex]\(\csc s = 1.4719\)[/tex] in the interval [tex]\([0, \frac{\pi}{2}]\)[/tex] is approximately:
[tex]\[ s \approx 0.746936424347283 \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.