Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the value of [tex]\( s \)[/tex] in the interval [tex]\(\left[\frac{3\pi}{2}, 2\pi\right]\)[/tex] where [tex]\(\cos(s) = \frac{\sqrt{2}}{2}\)[/tex], we can follow these detailed steps:
1. Identify the general angles where [tex]\(\cos(s) = \frac{\sqrt{2}}{2}\)[/tex]:
The cosine function equals [tex]\(\frac{\sqrt{2}}{2}\)[/tex] at specific known reference angles. These angles are:
[tex]\[ s = \frac{\pi}{4} \quad \text{and} \quad s = \frac{7\pi}{4} \][/tex]
2. Determine which angle lies within the specified interval:
We need to check each of these angles to see if they fall within the interval [tex]\(\left[\frac{3\pi}{2}, 2\pi\right]\)[/tex]:
- The angle [tex]\(\frac{\pi}{4}\)[/tex] is in the first quadrant, and [tex]\(\frac{\pi}{4}\)[/tex] is less than [tex]\(\frac{3\pi}{2}\)[/tex], so it does not lie in the desired interval.
- The angle [tex]\(\frac{7\pi}{4}\)[/tex] can be expressed in radians. Since:
[tex]\[ 2\pi = \frac{8\pi}{4} \][/tex]
and since:
[tex]\[ \frac{3\pi}{2} = \frac{6\pi}{4} \][/tex]
we can see that:
[tex]\[ \frac{7\pi}{4} \][/tex]
lies between [tex]\(\frac{6\pi}{4}\)[/tex] and [tex]\(\frac{8\pi}{4}\)[/tex], so it falls within the interval [tex]\(\left[\frac{3\pi}{2}, 2\pi\right]\)[/tex].
3. Conclusion:
Therefore, the exact value of [tex]\( s \)[/tex] in the interval [tex]\(\left[\frac{3\pi}{2}, 2\pi\right]\)[/tex] that satisfies [tex]\(\cos(s) = \frac{\sqrt{2}}{2}\)[/tex] is:
[tex]\[ s = \frac{7\pi}{4} \][/tex]
So, the solution is:
[tex]\[ s = \frac{7\pi}{4} \text{ radians} \][/tex]
1. Identify the general angles where [tex]\(\cos(s) = \frac{\sqrt{2}}{2}\)[/tex]:
The cosine function equals [tex]\(\frac{\sqrt{2}}{2}\)[/tex] at specific known reference angles. These angles are:
[tex]\[ s = \frac{\pi}{4} \quad \text{and} \quad s = \frac{7\pi}{4} \][/tex]
2. Determine which angle lies within the specified interval:
We need to check each of these angles to see if they fall within the interval [tex]\(\left[\frac{3\pi}{2}, 2\pi\right]\)[/tex]:
- The angle [tex]\(\frac{\pi}{4}\)[/tex] is in the first quadrant, and [tex]\(\frac{\pi}{4}\)[/tex] is less than [tex]\(\frac{3\pi}{2}\)[/tex], so it does not lie in the desired interval.
- The angle [tex]\(\frac{7\pi}{4}\)[/tex] can be expressed in radians. Since:
[tex]\[ 2\pi = \frac{8\pi}{4} \][/tex]
and since:
[tex]\[ \frac{3\pi}{2} = \frac{6\pi}{4} \][/tex]
we can see that:
[tex]\[ \frac{7\pi}{4} \][/tex]
lies between [tex]\(\frac{6\pi}{4}\)[/tex] and [tex]\(\frac{8\pi}{4}\)[/tex], so it falls within the interval [tex]\(\left[\frac{3\pi}{2}, 2\pi\right]\)[/tex].
3. Conclusion:
Therefore, the exact value of [tex]\( s \)[/tex] in the interval [tex]\(\left[\frac{3\pi}{2}, 2\pi\right]\)[/tex] that satisfies [tex]\(\cos(s) = \frac{\sqrt{2}}{2}\)[/tex] is:
[tex]\[ s = \frac{7\pi}{4} \][/tex]
So, the solution is:
[tex]\[ s = \frac{7\pi}{4} \text{ radians} \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.