Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the exact values of [tex]\( s \)[/tex] in the interval [tex]\([0, 2\pi)\)[/tex] that satisfy the condition [tex]\(\cos s = -\frac{\sqrt{3}}{2}\)[/tex], we need to identify the angles within this interval for which the cosine function equals [tex]\(-\frac{\sqrt{3}}{2}\)[/tex].
The cosine of an angle is [tex]\(-\frac{\sqrt{3}}{2}\)[/tex] at:
1. [tex]\( s = \frac{5\pi}{6} \)[/tex]
2. [tex]\( s = \frac{7\pi}{6} \)[/tex]
These angles are derived from the unit circle where the cosine values reach [tex]\(-\frac{\sqrt{3}}{2}\)[/tex]:
- At [tex]\( \frac{5\pi}{6} \)[/tex], which is in the second quadrant.
- At [tex]\( \frac{7\pi}{6} \)[/tex], which is in the third quadrant.
Thus, the exact values of [tex]\( s \)[/tex] in the interval [tex]\([0, 2\pi)\)[/tex] that satisfy the condition [tex]\(\cos s = -\frac{\sqrt{3}}{2}\)[/tex] are:
[tex]\[ s = \frac{5\pi}{6}, \frac{7\pi}{6} \][/tex]
So the final answer is:
[tex]\[ \frac{5\pi}{6}, \frac{7\pi}{6} \][/tex]
The cosine of an angle is [tex]\(-\frac{\sqrt{3}}{2}\)[/tex] at:
1. [tex]\( s = \frac{5\pi}{6} \)[/tex]
2. [tex]\( s = \frac{7\pi}{6} \)[/tex]
These angles are derived from the unit circle where the cosine values reach [tex]\(-\frac{\sqrt{3}}{2}\)[/tex]:
- At [tex]\( \frac{5\pi}{6} \)[/tex], which is in the second quadrant.
- At [tex]\( \frac{7\pi}{6} \)[/tex], which is in the third quadrant.
Thus, the exact values of [tex]\( s \)[/tex] in the interval [tex]\([0, 2\pi)\)[/tex] that satisfy the condition [tex]\(\cos s = -\frac{\sqrt{3}}{2}\)[/tex] are:
[tex]\[ s = \frac{5\pi}{6}, \frac{7\pi}{6} \][/tex]
So the final answer is:
[tex]\[ \frac{5\pi}{6}, \frac{7\pi}{6} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.