Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Find the exact values of [tex]\( s \)[/tex] in the interval [tex]\([0, 2\pi)\)[/tex] that satisfy the condition [tex]\(\cos s = -\frac{\sqrt{3}}{2}\)[/tex].

[tex]\( s = \square, \square \)[/tex]

(Use a comma to separate answers as needed. Simplify your answers. Type exact answers, using [tex]\(\pi\)[/tex] as needed. Use integers or fractions for any numbers in the expression.)

Sagot :

To find the exact values of [tex]\( s \)[/tex] in the interval [tex]\([0, 2\pi)\)[/tex] that satisfy the condition [tex]\(\cos s = -\frac{\sqrt{3}}{2}\)[/tex], we need to identify the angles within this interval for which the cosine function equals [tex]\(-\frac{\sqrt{3}}{2}\)[/tex].

The cosine of an angle is [tex]\(-\frac{\sqrt{3}}{2}\)[/tex] at:

1. [tex]\( s = \frac{5\pi}{6} \)[/tex]
2. [tex]\( s = \frac{7\pi}{6} \)[/tex]

These angles are derived from the unit circle where the cosine values reach [tex]\(-\frac{\sqrt{3}}{2}\)[/tex]:

- At [tex]\( \frac{5\pi}{6} \)[/tex], which is in the second quadrant.
- At [tex]\( \frac{7\pi}{6} \)[/tex], which is in the third quadrant.

Thus, the exact values of [tex]\( s \)[/tex] in the interval [tex]\([0, 2\pi)\)[/tex] that satisfy the condition [tex]\(\cos s = -\frac{\sqrt{3}}{2}\)[/tex] are:

[tex]\[ s = \frac{5\pi}{6}, \frac{7\pi}{6} \][/tex]

So the final answer is:

[tex]\[ \frac{5\pi}{6}, \frac{7\pi}{6} \][/tex]