Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Ask your questions and receive precise answers from experienced professionals across different disciplines. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Let's break down the problem step-by-step to find the correct inequality and possible values of [tex]\( y \)[/tex].
1. Identify the given information:
- Maximum amount Alina spent on gas: \[tex]$45. - Cost per gallon at the first gas station: \$[/tex]3.50.
- Cost per gallon at the second gas station: \[tex]$4.00. 2. Formulate the inequality: - Let \( x \) be the number of gallons bought at the first gas station. - Let \( y \) be the number of gallons bought at the second gas station. - The total amount spent on gas cannot exceed \$[/tex]45, so we can write the inequality as:
[tex]\[ 3.5x + 4y \leq 45 \][/tex]
3. Determine the possible values of [tex]\( y \)[/tex]:
- First, recognize that [tex]\( x \)[/tex] and [tex]\( y \)[/tex] must be non-negative since you can't buy a negative amount of gas:
[tex]\[ x \geq 0 \quad \text{and} \quad y \geq 0 \][/tex]
- To find the maximum value of [tex]\( y \)[/tex], consider the scenario where [tex]\( x = 0 \)[/tex]:
[tex]\[ 3.5(0) + 4y \leq 45 \implies 4y \leq 45 \implies y \leq \frac{45}{4} \implies y \leq 11.25 \][/tex]
- To find the minimum value of [tex]\( y \)[/tex], recognize again that y must be non-negative:
[tex]\[ y \geq 0 \][/tex]
Therefore, the inequality and the range of possible values of [tex]\( y \)[/tex] are:
[tex]\[ 3.5x + 4y \leq 45, \quad 0 \leq y \leq 11.25 \][/tex]
Hence, the correct answer is:
[tex]\[ \boxed{3.5 x+4 y \leq 45,0 \leq y \leq 11.25} \][/tex]
1. Identify the given information:
- Maximum amount Alina spent on gas: \[tex]$45. - Cost per gallon at the first gas station: \$[/tex]3.50.
- Cost per gallon at the second gas station: \[tex]$4.00. 2. Formulate the inequality: - Let \( x \) be the number of gallons bought at the first gas station. - Let \( y \) be the number of gallons bought at the second gas station. - The total amount spent on gas cannot exceed \$[/tex]45, so we can write the inequality as:
[tex]\[ 3.5x + 4y \leq 45 \][/tex]
3. Determine the possible values of [tex]\( y \)[/tex]:
- First, recognize that [tex]\( x \)[/tex] and [tex]\( y \)[/tex] must be non-negative since you can't buy a negative amount of gas:
[tex]\[ x \geq 0 \quad \text{and} \quad y \geq 0 \][/tex]
- To find the maximum value of [tex]\( y \)[/tex], consider the scenario where [tex]\( x = 0 \)[/tex]:
[tex]\[ 3.5(0) + 4y \leq 45 \implies 4y \leq 45 \implies y \leq \frac{45}{4} \implies y \leq 11.25 \][/tex]
- To find the minimum value of [tex]\( y \)[/tex], recognize again that y must be non-negative:
[tex]\[ y \geq 0 \][/tex]
Therefore, the inequality and the range of possible values of [tex]\( y \)[/tex] are:
[tex]\[ 3.5x + 4y \leq 45, \quad 0 \leq y \leq 11.25 \][/tex]
Hence, the correct answer is:
[tex]\[ \boxed{3.5 x+4 y \leq 45,0 \leq y \leq 11.25} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.