Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

Use the formula [tex]\(A = \frac{1}{2} b h\)[/tex] to solve for [tex]\(b\)[/tex].

a) When [tex]\(A = 390\)[/tex] and [tex]\(h = 26\)[/tex].

b) In general (just the formula, [tex]\(b = ?\)[/tex]).


Sagot :

Sure, let's work through the problem step-by-step.

### Part (a) - Solving for [tex]\( b \)[/tex] when [tex]\( A = 390 \)[/tex] and [tex]\( h = 26 \)[/tex]:

We start with the formula for the area of a triangle:
[tex]\[ A = \frac{1}{2} b h \][/tex]

Given:
- [tex]\( A = 390 \)[/tex]
- [tex]\( h = 26 \)[/tex]

We need to solve for the base [tex]\( b \)[/tex].

First, substitute the given values of [tex]\( A \)[/tex] and [tex]\( h \)[/tex] into the formula:
[tex]\[ 390 = \frac{1}{2} b \cdot 26 \][/tex]

Next, isolate [tex]\( b \)[/tex] by performing the following steps:

1. Multiply both sides of the equation by 2 to eliminate the fraction:
[tex]\[ 2 \cdot 390 = b \cdot 26 \][/tex]
[tex]\[ 780 = b \cdot 26 \][/tex]

2. Divide both sides by 26 to solve for [tex]\( b \)[/tex]:
[tex]\[ b = \frac{780}{26} \][/tex]
[tex]\[ b = 30 \][/tex]

So, when [tex]\( A = 390 \)[/tex] and [tex]\( h = 26 \)[/tex], the base [tex]\( b \)[/tex] is [tex]\( 30 \)[/tex].

### Part (b) - Solving for [tex]\( b \)[/tex] in general:

To find the general formula for [tex]\( b \)[/tex], start from the area formula:
[tex]\[ A = \frac{1}{2} b h \][/tex]

We need to solve for [tex]\( b \)[/tex]. Rearrange the equation to isolate [tex]\( b \)[/tex]:
[tex]\[ \frac{1}{2} b h = A \][/tex]

First, multiply both sides by 2 to get rid of the fraction:
[tex]\[ b h = 2A \][/tex]

Then, divide both sides by [tex]\( h \)[/tex] to solve for [tex]\( b \)[/tex]:
[tex]\[ b = \frac{2A}{h} \][/tex]

This gives us the general formula for [tex]\( b \)[/tex] in terms of [tex]\( A \)[/tex] and [tex]\( h \)[/tex]:
[tex]\[ b = \frac{2A}{h} \][/tex]

Therefore, in general, the base [tex]\( b \)[/tex] can be calculated using the formula:
[tex]\[ b = \frac{2A}{h} \][/tex]