Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the equation of the line that is parallel to the given line [tex]\(3x - 4y = -17\)[/tex] and passes through the point [tex]\((-3, 2)\)[/tex], we can follow these steps:
1. Identify the slope of the given line:
The given line equation is [tex]\(3x - 4y = -17\)[/tex]. To find the slope, we need to rewrite the equation in the slope-intercept form [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope.
[tex]\[ 3x - 4y = -17 \][/tex]
[tex]\[ -4y = -3x - 17 \][/tex]
[tex]\[ y = \frac{3}{4}x + \frac{17}{4} \][/tex]
From this, we can see that the slope [tex]\(m\)[/tex] is [tex]\(\frac{3}{4}\)[/tex].
2. Recognize that parallel lines have the same slope:
Any line parallel to [tex]\(3x - 4y = -17\)[/tex] must have the same slope, which is [tex]\(\frac{3}{4}\)[/tex].
3. Write the equation of the new line:
The general form of the line parallel to the given line will be:
[tex]\[ 3x - 4y = C \][/tex]
where [tex]\(C\)[/tex] is a constant that we need to find.
4. Substitute the point [tex]\((-3, 2)\)[/tex] into the new equation to solve for [tex]\(C\)[/tex]:
[tex]\[ 3(-3) - 4(2) = C \][/tex]
[tex]\[ -9 - 8 = C \][/tex]
[tex]\[ C = -17 \][/tex]
5. Form the equation of the parallel line:
Substitute [tex]\(C\)[/tex] back into the general form:
[tex]\[ 3x - 4y = -17 \][/tex]
Therefore, the equation of the line that is parallel to the line [tex]\(3x - 4y = -17\)[/tex] and passes through the point [tex]\((-3, 2)\)[/tex] is:
[tex]\[ 3x - 4y = -17 \][/tex]
So, the correct answer from the given options is:
[tex]\[ \boxed{3x - 4y = -17} \][/tex]
1. Identify the slope of the given line:
The given line equation is [tex]\(3x - 4y = -17\)[/tex]. To find the slope, we need to rewrite the equation in the slope-intercept form [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope.
[tex]\[ 3x - 4y = -17 \][/tex]
[tex]\[ -4y = -3x - 17 \][/tex]
[tex]\[ y = \frac{3}{4}x + \frac{17}{4} \][/tex]
From this, we can see that the slope [tex]\(m\)[/tex] is [tex]\(\frac{3}{4}\)[/tex].
2. Recognize that parallel lines have the same slope:
Any line parallel to [tex]\(3x - 4y = -17\)[/tex] must have the same slope, which is [tex]\(\frac{3}{4}\)[/tex].
3. Write the equation of the new line:
The general form of the line parallel to the given line will be:
[tex]\[ 3x - 4y = C \][/tex]
where [tex]\(C\)[/tex] is a constant that we need to find.
4. Substitute the point [tex]\((-3, 2)\)[/tex] into the new equation to solve for [tex]\(C\)[/tex]:
[tex]\[ 3(-3) - 4(2) = C \][/tex]
[tex]\[ -9 - 8 = C \][/tex]
[tex]\[ C = -17 \][/tex]
5. Form the equation of the parallel line:
Substitute [tex]\(C\)[/tex] back into the general form:
[tex]\[ 3x - 4y = -17 \][/tex]
Therefore, the equation of the line that is parallel to the line [tex]\(3x - 4y = -17\)[/tex] and passes through the point [tex]\((-3, 2)\)[/tex] is:
[tex]\[ 3x - 4y = -17 \][/tex]
So, the correct answer from the given options is:
[tex]\[ \boxed{3x - 4y = -17} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.