At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

1. [tex]\(\lim_{{x \to 5}}(7 - 3x)\)[/tex]

Sagot :

Sure! Let's find the limit of the function [tex]\(7 - 3x\)[/tex] as [tex]\(x\)[/tex] approaches 5.

First, we need to identify the given function:

[tex]\[ f(x) = 7 - 3x \][/tex]

We need to find the limit of [tex]\(f(x)\)[/tex] as [tex]\(x\)[/tex] approaches 5:

[tex]\[ \lim_{x \to 5} (7 - 3x) \][/tex]

To do this, we can simply substitute [tex]\(x = 5\)[/tex] into the function because this is a continuous function and the value will be well-defined:

[tex]\[ f(5) = 7 - 3(5) \][/tex]

Now, carry out the arithmetic inside the parentheses:

[tex]\[ f(5) = 7 - 15 \][/tex]

Finally, we subtract:

[tex]\[ f(5) = -8 \][/tex]

Therefore, the limit is

[tex]\[ \lim_{x \to 5} (7 - 3x) = -8 \][/tex]

So, the result of this limit as [tex]\( x \)[/tex] approaches 5 is [tex]\(-8\)[/tex].