At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the mass of the lighter canoe, we will use Newton's law of universal gravitation, which states that the gravitational force [tex]\( F \)[/tex] between two masses [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] separated by a distance [tex]\( r \)[/tex] is given by the formula:
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
where:
- [tex]\( G \)[/tex] is the gravitational constant ([tex]\( 6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)[/tex])
- [tex]\( F \)[/tex] is the gravitational force ([tex]\( 2.378 \times 10^{-13} \, \text{N} \)[/tex])
- [tex]\( r \)[/tex] is the separation distance ([tex]\( 1,500 \, \text{m} \)[/tex])
- [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses of the two canoes
We are given that one canoe is twice as massive as the other. Let's denote the mass of the lighter canoe as [tex]\( m \)[/tex]. Therefore, the mass of the heavier canoe will be [tex]\( 2m \)[/tex].
Using the given values in the gravitational force formula:
[tex]\[ 2.378 \times 10^{-13} = G \frac{m \cdot 2m}{(1500)^2} \][/tex]
Substitute [tex]\( G \)[/tex] and solve for [tex]\( m \)[/tex]:
[tex]\[ 2.378 \times 10^{-13} = 6.67430 \times 10^{-11} \frac{2m^2}{(1500)^2} \][/tex]
Let's isolate [tex]\( m^2 \)[/tex]:
[tex]\[ 2.378 \times 10^{-13} = 6.67430 \times 10^{-11} \frac{2m^2}{2250000} \][/tex]
[tex]\[ 2.378 \times 10^{-13} = 6.67430 \times 10^{-11} \cdot \frac{2m^2}{2250000} \][/tex]
Simplify the equation:
[tex]\[ 2.378 \times 10^{-13} = \frac{6.67430 \times 10^{-11} \cdot 2m^2}{2250000} \][/tex]
[tex]\[ 2.378 \times 10^{-13} = \frac{1.33486 \times 10^{-10} m^2}{2250000} \][/tex]
[tex]\[ 2.378 \times 10^{-13} = \frac{1.33486 \times 10^{-10} m^2}{2250000} \][/tex]
Multiply both sides by [tex]\( 2250000 \)[/tex]:
[tex]\[ 2.378 \times 10^{-13} \times 2250000 = 1.33486 \times 10^{-10} m^2 \][/tex]
[tex]\[ 5.3505 \times 10^{-7} = 1.33486 \times 10^{-10} m^2 \][/tex]
Now divide by [tex]\( 1.33486 \times 10^{-10} \)[/tex] to isolate [tex]\( m^2 \)[/tex]:
[tex]\[ m^2 = \frac{5.3505 \times 10^{-7}}{1.33486 \times 10^{-10}} \][/tex]
[tex]\[ m^2 \approx 4008.285513087515 \][/tex]
Take the square root of both sides to solve for [tex]\( m \)[/tex]:
[tex]\[ m \approx \sqrt{4008.285513087515} \][/tex]
[tex]\[ m \approx 63.311022050568056 \][/tex]
Rounded to two significant figures:
[tex]\[ m \approx 63.31 \, \text{kg} \][/tex]
Thus, the mass of the lighter canoe is approximately [tex]\( 63 \, \text{kg} \)[/tex].
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
where:
- [tex]\( G \)[/tex] is the gravitational constant ([tex]\( 6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)[/tex])
- [tex]\( F \)[/tex] is the gravitational force ([tex]\( 2.378 \times 10^{-13} \, \text{N} \)[/tex])
- [tex]\( r \)[/tex] is the separation distance ([tex]\( 1,500 \, \text{m} \)[/tex])
- [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses of the two canoes
We are given that one canoe is twice as massive as the other. Let's denote the mass of the lighter canoe as [tex]\( m \)[/tex]. Therefore, the mass of the heavier canoe will be [tex]\( 2m \)[/tex].
Using the given values in the gravitational force formula:
[tex]\[ 2.378 \times 10^{-13} = G \frac{m \cdot 2m}{(1500)^2} \][/tex]
Substitute [tex]\( G \)[/tex] and solve for [tex]\( m \)[/tex]:
[tex]\[ 2.378 \times 10^{-13} = 6.67430 \times 10^{-11} \frac{2m^2}{(1500)^2} \][/tex]
Let's isolate [tex]\( m^2 \)[/tex]:
[tex]\[ 2.378 \times 10^{-13} = 6.67430 \times 10^{-11} \frac{2m^2}{2250000} \][/tex]
[tex]\[ 2.378 \times 10^{-13} = 6.67430 \times 10^{-11} \cdot \frac{2m^2}{2250000} \][/tex]
Simplify the equation:
[tex]\[ 2.378 \times 10^{-13} = \frac{6.67430 \times 10^{-11} \cdot 2m^2}{2250000} \][/tex]
[tex]\[ 2.378 \times 10^{-13} = \frac{1.33486 \times 10^{-10} m^2}{2250000} \][/tex]
[tex]\[ 2.378 \times 10^{-13} = \frac{1.33486 \times 10^{-10} m^2}{2250000} \][/tex]
Multiply both sides by [tex]\( 2250000 \)[/tex]:
[tex]\[ 2.378 \times 10^{-13} \times 2250000 = 1.33486 \times 10^{-10} m^2 \][/tex]
[tex]\[ 5.3505 \times 10^{-7} = 1.33486 \times 10^{-10} m^2 \][/tex]
Now divide by [tex]\( 1.33486 \times 10^{-10} \)[/tex] to isolate [tex]\( m^2 \)[/tex]:
[tex]\[ m^2 = \frac{5.3505 \times 10^{-7}}{1.33486 \times 10^{-10}} \][/tex]
[tex]\[ m^2 \approx 4008.285513087515 \][/tex]
Take the square root of both sides to solve for [tex]\( m \)[/tex]:
[tex]\[ m \approx \sqrt{4008.285513087515} \][/tex]
[tex]\[ m \approx 63.311022050568056 \][/tex]
Rounded to two significant figures:
[tex]\[ m \approx 63.31 \, \text{kg} \][/tex]
Thus, the mass of the lighter canoe is approximately [tex]\( 63 \, \text{kg} \)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.