Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the mass of the lighter canoe, we will use Newton's law of universal gravitation, which states that the gravitational force [tex]\( F \)[/tex] between two masses [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] separated by a distance [tex]\( r \)[/tex] is given by the formula:
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
where:
- [tex]\( G \)[/tex] is the gravitational constant ([tex]\( 6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)[/tex])
- [tex]\( F \)[/tex] is the gravitational force ([tex]\( 2.378 \times 10^{-13} \, \text{N} \)[/tex])
- [tex]\( r \)[/tex] is the separation distance ([tex]\( 1,500 \, \text{m} \)[/tex])
- [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses of the two canoes
We are given that one canoe is twice as massive as the other. Let's denote the mass of the lighter canoe as [tex]\( m \)[/tex]. Therefore, the mass of the heavier canoe will be [tex]\( 2m \)[/tex].
Using the given values in the gravitational force formula:
[tex]\[ 2.378 \times 10^{-13} = G \frac{m \cdot 2m}{(1500)^2} \][/tex]
Substitute [tex]\( G \)[/tex] and solve for [tex]\( m \)[/tex]:
[tex]\[ 2.378 \times 10^{-13} = 6.67430 \times 10^{-11} \frac{2m^2}{(1500)^2} \][/tex]
Let's isolate [tex]\( m^2 \)[/tex]:
[tex]\[ 2.378 \times 10^{-13} = 6.67430 \times 10^{-11} \frac{2m^2}{2250000} \][/tex]
[tex]\[ 2.378 \times 10^{-13} = 6.67430 \times 10^{-11} \cdot \frac{2m^2}{2250000} \][/tex]
Simplify the equation:
[tex]\[ 2.378 \times 10^{-13} = \frac{6.67430 \times 10^{-11} \cdot 2m^2}{2250000} \][/tex]
[tex]\[ 2.378 \times 10^{-13} = \frac{1.33486 \times 10^{-10} m^2}{2250000} \][/tex]
[tex]\[ 2.378 \times 10^{-13} = \frac{1.33486 \times 10^{-10} m^2}{2250000} \][/tex]
Multiply both sides by [tex]\( 2250000 \)[/tex]:
[tex]\[ 2.378 \times 10^{-13} \times 2250000 = 1.33486 \times 10^{-10} m^2 \][/tex]
[tex]\[ 5.3505 \times 10^{-7} = 1.33486 \times 10^{-10} m^2 \][/tex]
Now divide by [tex]\( 1.33486 \times 10^{-10} \)[/tex] to isolate [tex]\( m^2 \)[/tex]:
[tex]\[ m^2 = \frac{5.3505 \times 10^{-7}}{1.33486 \times 10^{-10}} \][/tex]
[tex]\[ m^2 \approx 4008.285513087515 \][/tex]
Take the square root of both sides to solve for [tex]\( m \)[/tex]:
[tex]\[ m \approx \sqrt{4008.285513087515} \][/tex]
[tex]\[ m \approx 63.311022050568056 \][/tex]
Rounded to two significant figures:
[tex]\[ m \approx 63.31 \, \text{kg} \][/tex]
Thus, the mass of the lighter canoe is approximately [tex]\( 63 \, \text{kg} \)[/tex].
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
where:
- [tex]\( G \)[/tex] is the gravitational constant ([tex]\( 6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)[/tex])
- [tex]\( F \)[/tex] is the gravitational force ([tex]\( 2.378 \times 10^{-13} \, \text{N} \)[/tex])
- [tex]\( r \)[/tex] is the separation distance ([tex]\( 1,500 \, \text{m} \)[/tex])
- [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses of the two canoes
We are given that one canoe is twice as massive as the other. Let's denote the mass of the lighter canoe as [tex]\( m \)[/tex]. Therefore, the mass of the heavier canoe will be [tex]\( 2m \)[/tex].
Using the given values in the gravitational force formula:
[tex]\[ 2.378 \times 10^{-13} = G \frac{m \cdot 2m}{(1500)^2} \][/tex]
Substitute [tex]\( G \)[/tex] and solve for [tex]\( m \)[/tex]:
[tex]\[ 2.378 \times 10^{-13} = 6.67430 \times 10^{-11} \frac{2m^2}{(1500)^2} \][/tex]
Let's isolate [tex]\( m^2 \)[/tex]:
[tex]\[ 2.378 \times 10^{-13} = 6.67430 \times 10^{-11} \frac{2m^2}{2250000} \][/tex]
[tex]\[ 2.378 \times 10^{-13} = 6.67430 \times 10^{-11} \cdot \frac{2m^2}{2250000} \][/tex]
Simplify the equation:
[tex]\[ 2.378 \times 10^{-13} = \frac{6.67430 \times 10^{-11} \cdot 2m^2}{2250000} \][/tex]
[tex]\[ 2.378 \times 10^{-13} = \frac{1.33486 \times 10^{-10} m^2}{2250000} \][/tex]
[tex]\[ 2.378 \times 10^{-13} = \frac{1.33486 \times 10^{-10} m^2}{2250000} \][/tex]
Multiply both sides by [tex]\( 2250000 \)[/tex]:
[tex]\[ 2.378 \times 10^{-13} \times 2250000 = 1.33486 \times 10^{-10} m^2 \][/tex]
[tex]\[ 5.3505 \times 10^{-7} = 1.33486 \times 10^{-10} m^2 \][/tex]
Now divide by [tex]\( 1.33486 \times 10^{-10} \)[/tex] to isolate [tex]\( m^2 \)[/tex]:
[tex]\[ m^2 = \frac{5.3505 \times 10^{-7}}{1.33486 \times 10^{-10}} \][/tex]
[tex]\[ m^2 \approx 4008.285513087515 \][/tex]
Take the square root of both sides to solve for [tex]\( m \)[/tex]:
[tex]\[ m \approx \sqrt{4008.285513087515} \][/tex]
[tex]\[ m \approx 63.311022050568056 \][/tex]
Rounded to two significant figures:
[tex]\[ m \approx 63.31 \, \text{kg} \][/tex]
Thus, the mass of the lighter canoe is approximately [tex]\( 63 \, \text{kg} \)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.