Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the mass of the lighter canoe, we will use Newton's law of universal gravitation, which states that the gravitational force [tex]\( F \)[/tex] between two masses [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] separated by a distance [tex]\( r \)[/tex] is given by the formula:
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
where:
- [tex]\( G \)[/tex] is the gravitational constant ([tex]\( 6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)[/tex])
- [tex]\( F \)[/tex] is the gravitational force ([tex]\( 2.378 \times 10^{-13} \, \text{N} \)[/tex])
- [tex]\( r \)[/tex] is the separation distance ([tex]\( 1,500 \, \text{m} \)[/tex])
- [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses of the two canoes
We are given that one canoe is twice as massive as the other. Let's denote the mass of the lighter canoe as [tex]\( m \)[/tex]. Therefore, the mass of the heavier canoe will be [tex]\( 2m \)[/tex].
Using the given values in the gravitational force formula:
[tex]\[ 2.378 \times 10^{-13} = G \frac{m \cdot 2m}{(1500)^2} \][/tex]
Substitute [tex]\( G \)[/tex] and solve for [tex]\( m \)[/tex]:
[tex]\[ 2.378 \times 10^{-13} = 6.67430 \times 10^{-11} \frac{2m^2}{(1500)^2} \][/tex]
Let's isolate [tex]\( m^2 \)[/tex]:
[tex]\[ 2.378 \times 10^{-13} = 6.67430 \times 10^{-11} \frac{2m^2}{2250000} \][/tex]
[tex]\[ 2.378 \times 10^{-13} = 6.67430 \times 10^{-11} \cdot \frac{2m^2}{2250000} \][/tex]
Simplify the equation:
[tex]\[ 2.378 \times 10^{-13} = \frac{6.67430 \times 10^{-11} \cdot 2m^2}{2250000} \][/tex]
[tex]\[ 2.378 \times 10^{-13} = \frac{1.33486 \times 10^{-10} m^2}{2250000} \][/tex]
[tex]\[ 2.378 \times 10^{-13} = \frac{1.33486 \times 10^{-10} m^2}{2250000} \][/tex]
Multiply both sides by [tex]\( 2250000 \)[/tex]:
[tex]\[ 2.378 \times 10^{-13} \times 2250000 = 1.33486 \times 10^{-10} m^2 \][/tex]
[tex]\[ 5.3505 \times 10^{-7} = 1.33486 \times 10^{-10} m^2 \][/tex]
Now divide by [tex]\( 1.33486 \times 10^{-10} \)[/tex] to isolate [tex]\( m^2 \)[/tex]:
[tex]\[ m^2 = \frac{5.3505 \times 10^{-7}}{1.33486 \times 10^{-10}} \][/tex]
[tex]\[ m^2 \approx 4008.285513087515 \][/tex]
Take the square root of both sides to solve for [tex]\( m \)[/tex]:
[tex]\[ m \approx \sqrt{4008.285513087515} \][/tex]
[tex]\[ m \approx 63.311022050568056 \][/tex]
Rounded to two significant figures:
[tex]\[ m \approx 63.31 \, \text{kg} \][/tex]
Thus, the mass of the lighter canoe is approximately [tex]\( 63 \, \text{kg} \)[/tex].
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
where:
- [tex]\( G \)[/tex] is the gravitational constant ([tex]\( 6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)[/tex])
- [tex]\( F \)[/tex] is the gravitational force ([tex]\( 2.378 \times 10^{-13} \, \text{N} \)[/tex])
- [tex]\( r \)[/tex] is the separation distance ([tex]\( 1,500 \, \text{m} \)[/tex])
- [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses of the two canoes
We are given that one canoe is twice as massive as the other. Let's denote the mass of the lighter canoe as [tex]\( m \)[/tex]. Therefore, the mass of the heavier canoe will be [tex]\( 2m \)[/tex].
Using the given values in the gravitational force formula:
[tex]\[ 2.378 \times 10^{-13} = G \frac{m \cdot 2m}{(1500)^2} \][/tex]
Substitute [tex]\( G \)[/tex] and solve for [tex]\( m \)[/tex]:
[tex]\[ 2.378 \times 10^{-13} = 6.67430 \times 10^{-11} \frac{2m^2}{(1500)^2} \][/tex]
Let's isolate [tex]\( m^2 \)[/tex]:
[tex]\[ 2.378 \times 10^{-13} = 6.67430 \times 10^{-11} \frac{2m^2}{2250000} \][/tex]
[tex]\[ 2.378 \times 10^{-13} = 6.67430 \times 10^{-11} \cdot \frac{2m^2}{2250000} \][/tex]
Simplify the equation:
[tex]\[ 2.378 \times 10^{-13} = \frac{6.67430 \times 10^{-11} \cdot 2m^2}{2250000} \][/tex]
[tex]\[ 2.378 \times 10^{-13} = \frac{1.33486 \times 10^{-10} m^2}{2250000} \][/tex]
[tex]\[ 2.378 \times 10^{-13} = \frac{1.33486 \times 10^{-10} m^2}{2250000} \][/tex]
Multiply both sides by [tex]\( 2250000 \)[/tex]:
[tex]\[ 2.378 \times 10^{-13} \times 2250000 = 1.33486 \times 10^{-10} m^2 \][/tex]
[tex]\[ 5.3505 \times 10^{-7} = 1.33486 \times 10^{-10} m^2 \][/tex]
Now divide by [tex]\( 1.33486 \times 10^{-10} \)[/tex] to isolate [tex]\( m^2 \)[/tex]:
[tex]\[ m^2 = \frac{5.3505 \times 10^{-7}}{1.33486 \times 10^{-10}} \][/tex]
[tex]\[ m^2 \approx 4008.285513087515 \][/tex]
Take the square root of both sides to solve for [tex]\( m \)[/tex]:
[tex]\[ m \approx \sqrt{4008.285513087515} \][/tex]
[tex]\[ m \approx 63.311022050568056 \][/tex]
Rounded to two significant figures:
[tex]\[ m \approx 63.31 \, \text{kg} \][/tex]
Thus, the mass of the lighter canoe is approximately [tex]\( 63 \, \text{kg} \)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.