Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To calculate the distance between the two asteroids given their masses and the gravitational force between them, we can use Newton's law of universal gravitation:
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
Where:
- [tex]\( F \)[/tex] is the gravitational force between the asteroids, which is [tex]\( 1030 \)[/tex] N.
- [tex]\( G \)[/tex] is the gravitational constant, which is [tex]\( 6.67430 \times 10^{-11} \)[/tex] m[tex]\(^3\)[/tex]kg[tex]\(^{-1}\)[/tex]s[tex]\(^{-2}\)[/tex].
- [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses of the two asteroids, each [tex]\( 1.41 \times 10^{14} \)[/tex] kg.
- [tex]\( r \)[/tex] is the distance between the centers of the two asteroids, which we need to find.
First, rearrange the formula to solve for [tex]\( r \)[/tex]:
[tex]\[ r^2 = G \frac{m_1 m_2}{F} \][/tex]
Substitute the given values into this formula:
[tex]\[ r^2 = (6.67430 \times 10^{-11}) \frac{(1.41 \times 10^{14}) (1.41 \times 10^{14})}{1030} \][/tex]
Next, compute the product [tex]\( m_1 m_2 \)[/tex]:
[tex]\[ m_1 m_2 = 1.41 \times 10^{14} \times 1.41 \times 10^{14} \][/tex]
[tex]\[ m_1 m_2 = 1.9881 \times 10^{28} \, \text{kg}^2 \][/tex]
Now, substitute back into the distance formula:
[tex]\[ r^2 = (6.67430 \times 10^{-11}) \frac{1.9881 \times 10^{28}}{1030} \][/tex]
Calculate the term inside the parentheses:
[tex]\[ G \frac{m_1 m_2}{F} = (6.67430 \times 10^{-11}) \times \frac{1.9881 \times 10^{28}}{1030} \][/tex]
[tex]\[ r^2 \approx 1.288269498058252 \times 10^{15} \, \text{m}^2 \][/tex]
To find [tex]\( r \)[/tex], take the square root of both sides:
[tex]\[ r \approx \sqrt{1.288269498058252 \times 10^{15}} \][/tex]
[tex]\[ r \approx 3.589247132837544 \times 10^{7} \, \text{m} \][/tex]
Therefore, the distance between the asteroids, written in scientific notation to three significant figures, is approximately:
[tex]\[ r \approx 3.59 \times 10^{7} \, \text{m} \][/tex]
So the distance between the asteroids is:
[tex]\[ 3.59 \times 10^{7} \, \text{m} \][/tex]
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
Where:
- [tex]\( F \)[/tex] is the gravitational force between the asteroids, which is [tex]\( 1030 \)[/tex] N.
- [tex]\( G \)[/tex] is the gravitational constant, which is [tex]\( 6.67430 \times 10^{-11} \)[/tex] m[tex]\(^3\)[/tex]kg[tex]\(^{-1}\)[/tex]s[tex]\(^{-2}\)[/tex].
- [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses of the two asteroids, each [tex]\( 1.41 \times 10^{14} \)[/tex] kg.
- [tex]\( r \)[/tex] is the distance between the centers of the two asteroids, which we need to find.
First, rearrange the formula to solve for [tex]\( r \)[/tex]:
[tex]\[ r^2 = G \frac{m_1 m_2}{F} \][/tex]
Substitute the given values into this formula:
[tex]\[ r^2 = (6.67430 \times 10^{-11}) \frac{(1.41 \times 10^{14}) (1.41 \times 10^{14})}{1030} \][/tex]
Next, compute the product [tex]\( m_1 m_2 \)[/tex]:
[tex]\[ m_1 m_2 = 1.41 \times 10^{14} \times 1.41 \times 10^{14} \][/tex]
[tex]\[ m_1 m_2 = 1.9881 \times 10^{28} \, \text{kg}^2 \][/tex]
Now, substitute back into the distance formula:
[tex]\[ r^2 = (6.67430 \times 10^{-11}) \frac{1.9881 \times 10^{28}}{1030} \][/tex]
Calculate the term inside the parentheses:
[tex]\[ G \frac{m_1 m_2}{F} = (6.67430 \times 10^{-11}) \times \frac{1.9881 \times 10^{28}}{1030} \][/tex]
[tex]\[ r^2 \approx 1.288269498058252 \times 10^{15} \, \text{m}^2 \][/tex]
To find [tex]\( r \)[/tex], take the square root of both sides:
[tex]\[ r \approx \sqrt{1.288269498058252 \times 10^{15}} \][/tex]
[tex]\[ r \approx 3.589247132837544 \times 10^{7} \, \text{m} \][/tex]
Therefore, the distance between the asteroids, written in scientific notation to three significant figures, is approximately:
[tex]\[ r \approx 3.59 \times 10^{7} \, \text{m} \][/tex]
So the distance between the asteroids is:
[tex]\[ 3.59 \times 10^{7} \, \text{m} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.