Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To calculate the distance between the two asteroids given their masses and the gravitational force between them, we can use Newton's law of universal gravitation:
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
Where:
- [tex]\( F \)[/tex] is the gravitational force between the asteroids, which is [tex]\( 1030 \)[/tex] N.
- [tex]\( G \)[/tex] is the gravitational constant, which is [tex]\( 6.67430 \times 10^{-11} \)[/tex] m[tex]\(^3\)[/tex]kg[tex]\(^{-1}\)[/tex]s[tex]\(^{-2}\)[/tex].
- [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses of the two asteroids, each [tex]\( 1.41 \times 10^{14} \)[/tex] kg.
- [tex]\( r \)[/tex] is the distance between the centers of the two asteroids, which we need to find.
First, rearrange the formula to solve for [tex]\( r \)[/tex]:
[tex]\[ r^2 = G \frac{m_1 m_2}{F} \][/tex]
Substitute the given values into this formula:
[tex]\[ r^2 = (6.67430 \times 10^{-11}) \frac{(1.41 \times 10^{14}) (1.41 \times 10^{14})}{1030} \][/tex]
Next, compute the product [tex]\( m_1 m_2 \)[/tex]:
[tex]\[ m_1 m_2 = 1.41 \times 10^{14} \times 1.41 \times 10^{14} \][/tex]
[tex]\[ m_1 m_2 = 1.9881 \times 10^{28} \, \text{kg}^2 \][/tex]
Now, substitute back into the distance formula:
[tex]\[ r^2 = (6.67430 \times 10^{-11}) \frac{1.9881 \times 10^{28}}{1030} \][/tex]
Calculate the term inside the parentheses:
[tex]\[ G \frac{m_1 m_2}{F} = (6.67430 \times 10^{-11}) \times \frac{1.9881 \times 10^{28}}{1030} \][/tex]
[tex]\[ r^2 \approx 1.288269498058252 \times 10^{15} \, \text{m}^2 \][/tex]
To find [tex]\( r \)[/tex], take the square root of both sides:
[tex]\[ r \approx \sqrt{1.288269498058252 \times 10^{15}} \][/tex]
[tex]\[ r \approx 3.589247132837544 \times 10^{7} \, \text{m} \][/tex]
Therefore, the distance between the asteroids, written in scientific notation to three significant figures, is approximately:
[tex]\[ r \approx 3.59 \times 10^{7} \, \text{m} \][/tex]
So the distance between the asteroids is:
[tex]\[ 3.59 \times 10^{7} \, \text{m} \][/tex]
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
Where:
- [tex]\( F \)[/tex] is the gravitational force between the asteroids, which is [tex]\( 1030 \)[/tex] N.
- [tex]\( G \)[/tex] is the gravitational constant, which is [tex]\( 6.67430 \times 10^{-11} \)[/tex] m[tex]\(^3\)[/tex]kg[tex]\(^{-1}\)[/tex]s[tex]\(^{-2}\)[/tex].
- [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses of the two asteroids, each [tex]\( 1.41 \times 10^{14} \)[/tex] kg.
- [tex]\( r \)[/tex] is the distance between the centers of the two asteroids, which we need to find.
First, rearrange the formula to solve for [tex]\( r \)[/tex]:
[tex]\[ r^2 = G \frac{m_1 m_2}{F} \][/tex]
Substitute the given values into this formula:
[tex]\[ r^2 = (6.67430 \times 10^{-11}) \frac{(1.41 \times 10^{14}) (1.41 \times 10^{14})}{1030} \][/tex]
Next, compute the product [tex]\( m_1 m_2 \)[/tex]:
[tex]\[ m_1 m_2 = 1.41 \times 10^{14} \times 1.41 \times 10^{14} \][/tex]
[tex]\[ m_1 m_2 = 1.9881 \times 10^{28} \, \text{kg}^2 \][/tex]
Now, substitute back into the distance formula:
[tex]\[ r^2 = (6.67430 \times 10^{-11}) \frac{1.9881 \times 10^{28}}{1030} \][/tex]
Calculate the term inside the parentheses:
[tex]\[ G \frac{m_1 m_2}{F} = (6.67430 \times 10^{-11}) \times \frac{1.9881 \times 10^{28}}{1030} \][/tex]
[tex]\[ r^2 \approx 1.288269498058252 \times 10^{15} \, \text{m}^2 \][/tex]
To find [tex]\( r \)[/tex], take the square root of both sides:
[tex]\[ r \approx \sqrt{1.288269498058252 \times 10^{15}} \][/tex]
[tex]\[ r \approx 3.589247132837544 \times 10^{7} \, \text{m} \][/tex]
Therefore, the distance between the asteroids, written in scientific notation to three significant figures, is approximately:
[tex]\[ r \approx 3.59 \times 10^{7} \, \text{m} \][/tex]
So the distance between the asteroids is:
[tex]\[ 3.59 \times 10^{7} \, \text{m} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.