Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To understand the relationship between the forces [tex]\(F_{P1}\)[/tex] and [tex]\(F_{P2}\)[/tex] acting on two planets in the same circular orbit around a central star, we will use the universal law of gravitation.
According to the universal law of gravitation, the force [tex]\(F\)[/tex] between any two masses [tex]\(m_1\)[/tex] and [tex]\(m_2\)[/tex] is given by the formula:
[tex]\[ F = G \cdot \frac{m_1 \cdot m_2}{r^2} \][/tex]
where:
- [tex]\(G\)[/tex] is the gravitational constant,
- [tex]\(m_1\)[/tex] and [tex]\(m_2\)[/tex] are the masses of the two bodies,
- [tex]\(r\)[/tex] is the distance between the centers of the two bodies.
Given:
1. The mass of planet 1 ([tex]\(m_1\)[/tex]) is equal to the mass of planet 2 ([tex]\(m_2\)[/tex]).
2. Both planets are in the same circular orbit around the central star, meaning the distance [tex]\(r\)[/tex] between the planets and the star is the same.
Since the distance and the masses are the same, the gravitational force between the star and each planet depends only on the universal gravitation formula. Therefore, the force exerted by the star on planet 1 ([tex]\(F_{P1}\)[/tex]) will be exactly the same as the force exerted by the star on planet 2 ([tex]\(F_{P2}\)[/tex]).
Thus, the relationship between [tex]\(F_{P1}\)[/tex] and [tex]\(F_{P2}\)[/tex] is:
[tex]\[ F_{P1} = F_{P2} \][/tex]
Therefore, the correct answer is:
(B) [tex]\(F_{P1} = F_{P2}\)[/tex].
According to the universal law of gravitation, the force [tex]\(F\)[/tex] between any two masses [tex]\(m_1\)[/tex] and [tex]\(m_2\)[/tex] is given by the formula:
[tex]\[ F = G \cdot \frac{m_1 \cdot m_2}{r^2} \][/tex]
where:
- [tex]\(G\)[/tex] is the gravitational constant,
- [tex]\(m_1\)[/tex] and [tex]\(m_2\)[/tex] are the masses of the two bodies,
- [tex]\(r\)[/tex] is the distance between the centers of the two bodies.
Given:
1. The mass of planet 1 ([tex]\(m_1\)[/tex]) is equal to the mass of planet 2 ([tex]\(m_2\)[/tex]).
2. Both planets are in the same circular orbit around the central star, meaning the distance [tex]\(r\)[/tex] between the planets and the star is the same.
Since the distance and the masses are the same, the gravitational force between the star and each planet depends only on the universal gravitation formula. Therefore, the force exerted by the star on planet 1 ([tex]\(F_{P1}\)[/tex]) will be exactly the same as the force exerted by the star on planet 2 ([tex]\(F_{P2}\)[/tex]).
Thus, the relationship between [tex]\(F_{P1}\)[/tex] and [tex]\(F_{P2}\)[/tex] is:
[tex]\[ F_{P1} = F_{P2} \][/tex]
Therefore, the correct answer is:
(B) [tex]\(F_{P1} = F_{P2}\)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.