Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the mass of the International Space Station (ISS), we can use the formula for gravitational force:
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
Given:
- [tex]\( F = 4.64 \times 10^{-6} \)[/tex] N (gravitational force)
- [tex]\( m_1 = 112 \)[/tex] kg (mass of the astronaut)
- [tex]\( r = 26 \)[/tex] m (distance between the astronaut and the ISS)
- [tex]\( G = 6.67430 \times 10^{-11} \)[/tex] m[tex]\(^3\)[/tex]kg[tex]\(^{-1}\)[/tex]s[tex]\(^{-1}\)[/tex] (gravitational constant)
We want to solve for [tex]\( m_2 \)[/tex], which is the mass of the ISS.
Rearrange the formula to solve for [tex]\( m_2 \)[/tex]:
[tex]\[ m_2 = \frac{F r^2}{G m_1} \][/tex]
Substitute the known values into the equation:
[tex]\[ m_2 = \frac{4.64 \times 10^{-6} \times 26^2}{6.67430 \times 10^{-11} \times 112} \][/tex]
Calculate the numerator:
[tex]\[ 4.64 \times 10^{-6} \times 26^2 = 4.64 \times 10^{-6} \times 676 = 3.13824 \times 10^{-3} \][/tex]
Calculate the denominator:
[tex]\[ 6.67430 \times 10^{-11} \times 112 = 7.475216 \times 10^{-9} \][/tex]
Now, divide the results to find [tex]\( m_2 \)[/tex]:
[tex]\[ m_2 = \frac{3.13824 \times 10^{-3}}{7.475216 \times 10^{-9}} = 419605.27 \, \text{kg} \][/tex]
Express the final result using two significant figures:
[tex]\[ m_2 \approx 4.2 \times 10^5 \, \text{kg} \][/tex]
Thus, the mass of the ISS is approximately [tex]\( \boxed{4.2 \times 10^5} \, \text{kg} \)[/tex].
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
Given:
- [tex]\( F = 4.64 \times 10^{-6} \)[/tex] N (gravitational force)
- [tex]\( m_1 = 112 \)[/tex] kg (mass of the astronaut)
- [tex]\( r = 26 \)[/tex] m (distance between the astronaut and the ISS)
- [tex]\( G = 6.67430 \times 10^{-11} \)[/tex] m[tex]\(^3\)[/tex]kg[tex]\(^{-1}\)[/tex]s[tex]\(^{-1}\)[/tex] (gravitational constant)
We want to solve for [tex]\( m_2 \)[/tex], which is the mass of the ISS.
Rearrange the formula to solve for [tex]\( m_2 \)[/tex]:
[tex]\[ m_2 = \frac{F r^2}{G m_1} \][/tex]
Substitute the known values into the equation:
[tex]\[ m_2 = \frac{4.64 \times 10^{-6} \times 26^2}{6.67430 \times 10^{-11} \times 112} \][/tex]
Calculate the numerator:
[tex]\[ 4.64 \times 10^{-6} \times 26^2 = 4.64 \times 10^{-6} \times 676 = 3.13824 \times 10^{-3} \][/tex]
Calculate the denominator:
[tex]\[ 6.67430 \times 10^{-11} \times 112 = 7.475216 \times 10^{-9} \][/tex]
Now, divide the results to find [tex]\( m_2 \)[/tex]:
[tex]\[ m_2 = \frac{3.13824 \times 10^{-3}}{7.475216 \times 10^{-9}} = 419605.27 \, \text{kg} \][/tex]
Express the final result using two significant figures:
[tex]\[ m_2 \approx 4.2 \times 10^5 \, \text{kg} \][/tex]
Thus, the mass of the ISS is approximately [tex]\( \boxed{4.2 \times 10^5} \, \text{kg} \)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.