Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the mass of the International Space Station (ISS), we can use the formula for gravitational force:
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
Given:
- [tex]\( F = 4.64 \times 10^{-6} \)[/tex] N (gravitational force)
- [tex]\( m_1 = 112 \)[/tex] kg (mass of the astronaut)
- [tex]\( r = 26 \)[/tex] m (distance between the astronaut and the ISS)
- [tex]\( G = 6.67430 \times 10^{-11} \)[/tex] m[tex]\(^3\)[/tex]kg[tex]\(^{-1}\)[/tex]s[tex]\(^{-1}\)[/tex] (gravitational constant)
We want to solve for [tex]\( m_2 \)[/tex], which is the mass of the ISS.
Rearrange the formula to solve for [tex]\( m_2 \)[/tex]:
[tex]\[ m_2 = \frac{F r^2}{G m_1} \][/tex]
Substitute the known values into the equation:
[tex]\[ m_2 = \frac{4.64 \times 10^{-6} \times 26^2}{6.67430 \times 10^{-11} \times 112} \][/tex]
Calculate the numerator:
[tex]\[ 4.64 \times 10^{-6} \times 26^2 = 4.64 \times 10^{-6} \times 676 = 3.13824 \times 10^{-3} \][/tex]
Calculate the denominator:
[tex]\[ 6.67430 \times 10^{-11} \times 112 = 7.475216 \times 10^{-9} \][/tex]
Now, divide the results to find [tex]\( m_2 \)[/tex]:
[tex]\[ m_2 = \frac{3.13824 \times 10^{-3}}{7.475216 \times 10^{-9}} = 419605.27 \, \text{kg} \][/tex]
Express the final result using two significant figures:
[tex]\[ m_2 \approx 4.2 \times 10^5 \, \text{kg} \][/tex]
Thus, the mass of the ISS is approximately [tex]\( \boxed{4.2 \times 10^5} \, \text{kg} \)[/tex].
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
Given:
- [tex]\( F = 4.64 \times 10^{-6} \)[/tex] N (gravitational force)
- [tex]\( m_1 = 112 \)[/tex] kg (mass of the astronaut)
- [tex]\( r = 26 \)[/tex] m (distance between the astronaut and the ISS)
- [tex]\( G = 6.67430 \times 10^{-11} \)[/tex] m[tex]\(^3\)[/tex]kg[tex]\(^{-1}\)[/tex]s[tex]\(^{-1}\)[/tex] (gravitational constant)
We want to solve for [tex]\( m_2 \)[/tex], which is the mass of the ISS.
Rearrange the formula to solve for [tex]\( m_2 \)[/tex]:
[tex]\[ m_2 = \frac{F r^2}{G m_1} \][/tex]
Substitute the known values into the equation:
[tex]\[ m_2 = \frac{4.64 \times 10^{-6} \times 26^2}{6.67430 \times 10^{-11} \times 112} \][/tex]
Calculate the numerator:
[tex]\[ 4.64 \times 10^{-6} \times 26^2 = 4.64 \times 10^{-6} \times 676 = 3.13824 \times 10^{-3} \][/tex]
Calculate the denominator:
[tex]\[ 6.67430 \times 10^{-11} \times 112 = 7.475216 \times 10^{-9} \][/tex]
Now, divide the results to find [tex]\( m_2 \)[/tex]:
[tex]\[ m_2 = \frac{3.13824 \times 10^{-3}}{7.475216 \times 10^{-9}} = 419605.27 \, \text{kg} \][/tex]
Express the final result using two significant figures:
[tex]\[ m_2 \approx 4.2 \times 10^5 \, \text{kg} \][/tex]
Thus, the mass of the ISS is approximately [tex]\( \boxed{4.2 \times 10^5} \, \text{kg} \)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.