At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Expand and simplify:

(x - 5)(4x + 11)


Sagot :

Sure, let's expand and simplify the expression [tex]\((x-5)(4x+11)\)[/tex].

1. Distribute each term in the first parenthesis to every term in the second parenthesis. This means we will multiply [tex]\(x\)[/tex] by each term in [tex]\(4x + 11\)[/tex] and then [tex]\(-5\)[/tex] by each term in [tex]\(4x + 11\)[/tex].

2. First, distribute [tex]\(x\)[/tex]:
[tex]\[ x \cdot 4x = 4x^2 \][/tex]
[tex]\[ x \cdot 11 = 11x \][/tex]

3. Next, distribute [tex]\(-5\)[/tex]:
[tex]\[ -5 \cdot 4x = -20x \][/tex]
[tex]\[ -5 \cdot 11 = -55 \][/tex]

4. Combine all of these results:
[tex]\[ 4x^2 + 11x - 20x - 55 \][/tex]

5. Simplify by combining like terms ([tex]\(11x\)[/tex] and [tex]\(-20x\)[/tex]):
[tex]\[ 4x^2 + (11x - 20x) - 55 \][/tex]
[tex]\[ 4x^2 - 9x - 55 \][/tex]

So, the expanded and simplified form of [tex]\((x-5)(4x+11)\)[/tex] is:
[tex]\[ 4x^2 - 9x - 55 \][/tex]