Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine which polynomial function has a leading coefficient of 3 and roots [tex]\(-4\)[/tex], [tex]\(i\)[/tex], and [tex]\(2\)[/tex] (all with multiplicity 1), let's follow these steps:
1. Identify Factors from Roots:
- A root of [tex]\(-4\)[/tex] corresponds to a factor of [tex]\((x + 4)\)[/tex].
- A root of [tex]\(i\)[/tex] (imaginary unit) corresponds to factors of [tex]\((x - i)\)[/tex] and [tex]\((x + i)\)[/tex] because complex roots come in conjugate pairs.
- A root of [tex]\(2\)[/tex] corresponds to a factor of [tex]\((x - 2)\)[/tex].
2. Construct the Polynomial:
- The polynomial function can be constructed by multiplying these factors together: [tex]\( (x + 4)(x - i)(x + i)(x - 2) \)[/tex].
- Since the leading coefficient is given as 3, we multiply the entire polynomial by 3 to obtain: [tex]\( 3(x + 4)(x - i)(x + i)(x - 2) \)[/tex].
3. Match with Given Choices:
- Now, let's compare the constructed polynomial [tex]\(3(x + 4)(x - i)(x + i)(x - 2)\)[/tex] with the given choices:
- [tex]\( f(x) = 3(x + 4)(x - 1)(x - 2) \)[/tex]
- [tex]\( f(x) = (x - 3)(x + 4)(x - 1)(x - 2) \)[/tex]
- [tex]\( f(x) = (x - 3)(x + 4)(x - i)(x + i)(x - 2) \)[/tex]
- [tex]\( f(x) = 3(x + 4)(x - i)(x + i)(x - 2) \)[/tex]
From the comparison, the polynomial [tex]\( f(x) = 3(x + 4)(x - i)(x + i)(x - 2) \)[/tex] aligns with the polynomial we have constructed.
Therefore, the correct choice is:
[tex]\[ \boxed{4} \][/tex]
1. Identify Factors from Roots:
- A root of [tex]\(-4\)[/tex] corresponds to a factor of [tex]\((x + 4)\)[/tex].
- A root of [tex]\(i\)[/tex] (imaginary unit) corresponds to factors of [tex]\((x - i)\)[/tex] and [tex]\((x + i)\)[/tex] because complex roots come in conjugate pairs.
- A root of [tex]\(2\)[/tex] corresponds to a factor of [tex]\((x - 2)\)[/tex].
2. Construct the Polynomial:
- The polynomial function can be constructed by multiplying these factors together: [tex]\( (x + 4)(x - i)(x + i)(x - 2) \)[/tex].
- Since the leading coefficient is given as 3, we multiply the entire polynomial by 3 to obtain: [tex]\( 3(x + 4)(x - i)(x + i)(x - 2) \)[/tex].
3. Match with Given Choices:
- Now, let's compare the constructed polynomial [tex]\(3(x + 4)(x - i)(x + i)(x - 2)\)[/tex] with the given choices:
- [tex]\( f(x) = 3(x + 4)(x - 1)(x - 2) \)[/tex]
- [tex]\( f(x) = (x - 3)(x + 4)(x - 1)(x - 2) \)[/tex]
- [tex]\( f(x) = (x - 3)(x + 4)(x - i)(x + i)(x - 2) \)[/tex]
- [tex]\( f(x) = 3(x + 4)(x - i)(x + i)(x - 2) \)[/tex]
From the comparison, the polynomial [tex]\( f(x) = 3(x + 4)(x - i)(x + i)(x - 2) \)[/tex] aligns with the polynomial we have constructed.
Therefore, the correct choice is:
[tex]\[ \boxed{4} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.