Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Which of the following is the graph of [tex]\( y = 0.5 \sec \left(x + \frac{\pi}{3} \right) - 2 \)[/tex]?

Sagot :

To graph the function [tex]\( y = 0.5 \sec \left( x + \frac{\pi}{3} \right) - 2 \)[/tex], we need to understand the components that make up this equation. Let's break it down step-by-step:

1. Understanding the Basic Secant Function:
The secant function, [tex]\( \sec(x) \)[/tex], is the reciprocal of the cosine function:
[tex]\[ \sec(x) = \frac{1}{\cos(x)} \][/tex]
The secant function has vertical asymptotes where the cosine function is zero, which occurs at [tex]\( x = \frac{\pi}{2} + k\pi \)[/tex], for any integer [tex]\( k \)[/tex].

2. Phase Shift:
The function [tex]\( \sec \left( x + \frac{\pi}{3} \right) \)[/tex] represents a horizontal shift of [tex]\( \sec(x) \)[/tex] to the left by [tex]\( \frac{\pi}{3} \)[/tex].

3. Amplitude Change:
The coefficient [tex]\( 0.5 \)[/tex] scales the secant function vertically. The maximum and minimum values of [tex]\( \sec(x) \)[/tex] are scaled by [tex]\( 0.5 \)[/tex], making the range of [tex]\( 0.5 \sec(x) \)[/tex] to be [tex]\( (-\infty, -0.5] \cup [0.5, \infty) \)[/tex].

4. Vertical Shift:
Subtracting 2 from the function shifts the entire graph downward by 2 units. This changes the range of [tex]\( 0.5 \sec \left( x + \frac{\pi}{3} \right) - 2 \)[/tex] to be [tex]\( (-\infty, -2.5] \cup [-1.5, \infty) \)[/tex].

5. Plotting Key Points:

- Start by plotting the vertical asymptotes. For [tex]\( \sec \left( x + \frac{\pi}{3} \right) \)[/tex], these occur where [tex]\( \cos \left( x + \frac{\pi}{3} \right) = 0 \)[/tex], which is at:
[tex]\[ x + \frac{\pi}{3} = \frac{\pi}{2} + k\pi \implies x = \frac{\pi}{6} + k\pi \quad (\text{for any integer } k) \][/tex]
So the asymptotes occur at [tex]\( x = \frac{\pi}{6} + \pi k \)[/tex].

- The typical points of [tex]\( \sec(x) \)[/tex] where it takes on maximum and minimum values also need to be adjusted for the phase shift.

6. Sketching the Graph:
- Notice that between the vertical asymptotes [tex]\( \frac{\pi}{6} + k\pi \)[/tex], the [tex]\( \sec \left( x + \frac{\pi}{3} \right) \)[/tex] could take maximum and minimum values.
- Apply the vertical stretch by 0.5.
- Shift the graph down 2 units.

### Graph Key Characteristics:

1. Vertical Asymptotes: At [tex]\( x = \frac{\pi}{6} + k\pi \)[/tex].
2. Maximum Points: For [tex]\( x = n\pi - \frac{\pi}{3} \)[/tex] where [tex]\( n \)[/tex] is even, the maximum will be [tex]\( 0.5 - 2 = -1.5 \)[/tex].
3. Minimum Points: For [tex]\( x = n\pi - \frac{\pi}{3} \)[/tex] where [tex]\( n \)[/tex] is odd, the minimum will be [tex]\( -0.5 - 2 = -2.5 \)[/tex].

### Conclusion

The graph of [tex]\( y = 0.5 \sec \left( x + \frac{\pi}{3} \right) - 2 \)[/tex] should exhibit vertical asymptotes at [tex]\( x = \frac{\pi}{6} + n\pi \)[/tex], maximum values of -1.5, and minimum values of -2.5. It systematically exhibits periodicity and algebraic manipulation assurance for exact characteristics mapping.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.