Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

C is the circle with the equation [tex]\(x^2 + y^2 = 1\)[/tex].

[tex]\(Q\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)\)[/tex] is a point on [tex]\(C\)[/tex].

The equation of the tangent to [tex]\(C\)[/tex] at point [tex]\(Q\)[/tex] can be written in the form [tex]\(y = ax + b\)[/tex].

Find the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex].

Sagot :

To find the equation of the tangent line to the circle [tex]\( x^2 + y^2 = 1 \)[/tex] at the point [tex]\( Q \left( \frac{1}{2}, \frac{\sqrt{3}}{2} \right) \)[/tex], we use the following method.

First, recall that the equation of the tangent to a circle [tex]\( x^2 + y^2 = r^2 \)[/tex] at a point [tex]\( (x_1, y_1) \)[/tex] on the circle is given by:
[tex]\[ x_1 x + y_1 y = r^2 \][/tex]

For our specific case, the circle has the equation [tex]\( x^2 + y^2 = 1 \)[/tex], meaning [tex]\( r^2 = 1 \)[/tex]. Thus, the tangent line at point [tex]\( Q \left( \frac{1}{2}, \frac{\sqrt{3}}{2} \right) \)[/tex] can be found using:
[tex]\[ \frac{1}{2} x + \frac{\sqrt{3}}{2} y = 1 \][/tex]

Next, we need to rearrange this equation into the slope-intercept form [tex]\( y = ax + b \)[/tex].

Starting from the tangent equation:
[tex]\[ \frac{1}{2} x + \frac{\sqrt{3}}{2} y = 1 \][/tex]

Isolate the [tex]\( y \)[/tex]-term:
[tex]\[ \frac{\sqrt{3}}{2} y = 1 - \frac{1}{2} x \][/tex]

Multiply both sides by [tex]\( \frac{2}{\sqrt{3}} \)[/tex] to solve for [tex]\( y \)[/tex]:
[tex]\[ y = \frac{2}{\sqrt{3}} - \frac{1}{\sqrt{3}} x \][/tex]

This simplifies to:
[tex]\[ y = \left( -\frac{1}{\sqrt{3}} \right) x + \frac{2}{\sqrt{3}} \][/tex]

Therefore, the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex] in the equation [tex]\( y = ax + b \)[/tex] are:
[tex]\[ a = -\frac{1}{\sqrt{3}} \approx -0.5773502691896258 \][/tex]
[tex]\[ b = \frac{2}{\sqrt{3}} \approx 1.1547005383792517 \][/tex]

Thus, the equation of the tangent line is:
[tex]\[ y = -0.5773502691896258 x + 1.1547005383792517 \][/tex]

So, the value of [tex]\( a \)[/tex] is [tex]\( -0.5773502691896258 \)[/tex] and the value of [tex]\( b \)[/tex] is [tex]\( 1.1547005383792517 \)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.