Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve the system of equations
[tex]\[ \begin{array}{l} 4x - y = 12 \\ x - \frac{1}{4}y = 3 \end{array} \][/tex]
we can use the method of substitution or elimination. Here, we'll use the elimination method to find the solution.
First, let's rewrite the equations neatly:
1. [tex]\( 4x - y = 12 \)[/tex] -- (Equation 1)
2. [tex]\( x - \frac{1}{4}y = 3 \)[/tex] -- (Equation 2)
To eliminate one of the variables, we'll first clear the fraction in Equation 2 by multiplying through by 4:
[tex]\[ 4x - y = 12 \quad \text{-- (Equation 1, unchanged)} \][/tex]
[tex]\[ 4 \left(x - \frac{1}{4}y\right) = 4 \cdot 3 \][/tex]
[tex]\[ 4x - y = 12 \quad \text{-- (Resulting Equation 2)} \][/tex]
Notice that the resulting Equation 2 is actually identical to Equation 1. This tells us that the two equations are not independent; they represent the same line. Therefore, every point on this line is a solution to the system.
Given that both equations represent the same line, the system is consistent and has infinitely many solutions. Therefore, we can express the solution set as:
[tex]\[ \{(x, y) \mid 4x - y = 12\} \][/tex]
To describe the solution set in terms of one variable, solve for [tex]\(y\)[/tex] in terms of [tex]\(x\)[/tex]:
[tex]\[ 4x - y = 12 \implies y = 4x - 12 \][/tex]
Thus, any point [tex]\((x, 4x - 12)\)[/tex] is a solution to this system. The solution can be described as:
[tex]\[\{(x, 4x - 12) \mid x \text{ is any real number}\}\][/tex]
Since the system of equations does not have a unique solution, it does not have exactly one solution and it is consistent with dependent equations.
So, the final answer is:
The system has infinitely many solutions. The solution set is [tex]\(\{(x, 4x - 12) \mid x \text{ is any real number}\}\)[/tex].
The system is consistent.
The equations are dependent.
[tex]\[ \begin{array}{l} 4x - y = 12 \\ x - \frac{1}{4}y = 3 \end{array} \][/tex]
we can use the method of substitution or elimination. Here, we'll use the elimination method to find the solution.
First, let's rewrite the equations neatly:
1. [tex]\( 4x - y = 12 \)[/tex] -- (Equation 1)
2. [tex]\( x - \frac{1}{4}y = 3 \)[/tex] -- (Equation 2)
To eliminate one of the variables, we'll first clear the fraction in Equation 2 by multiplying through by 4:
[tex]\[ 4x - y = 12 \quad \text{-- (Equation 1, unchanged)} \][/tex]
[tex]\[ 4 \left(x - \frac{1}{4}y\right) = 4 \cdot 3 \][/tex]
[tex]\[ 4x - y = 12 \quad \text{-- (Resulting Equation 2)} \][/tex]
Notice that the resulting Equation 2 is actually identical to Equation 1. This tells us that the two equations are not independent; they represent the same line. Therefore, every point on this line is a solution to the system.
Given that both equations represent the same line, the system is consistent and has infinitely many solutions. Therefore, we can express the solution set as:
[tex]\[ \{(x, y) \mid 4x - y = 12\} \][/tex]
To describe the solution set in terms of one variable, solve for [tex]\(y\)[/tex] in terms of [tex]\(x\)[/tex]:
[tex]\[ 4x - y = 12 \implies y = 4x - 12 \][/tex]
Thus, any point [tex]\((x, 4x - 12)\)[/tex] is a solution to this system. The solution can be described as:
[tex]\[\{(x, 4x - 12) \mid x \text{ is any real number}\}\][/tex]
Since the system of equations does not have a unique solution, it does not have exactly one solution and it is consistent with dependent equations.
So, the final answer is:
The system has infinitely many solutions. The solution set is [tex]\(\{(x, 4x - 12) \mid x \text{ is any real number}\}\)[/tex].
The system is consistent.
The equations are dependent.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.