Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Angles J and K are complementary.

If angle J measures (3x + 15)° and angle K measures 63°, what is the value of x?


Sagot :

To solve the given problem, let's go through it step-by-step.

1. Understanding Complementary Angles:
Complementary angles are two angles whose measures add up to 90 degrees. This means:
[tex]\[ \text{angle J} + \text{angle K} = 90^\circ \][/tex]

2. Assign the Given Values:
We are given:
[tex]\[ \text{angle J} = (3x + 15)^\circ \][/tex]
[tex]\[ \text{angle K} = 63^\circ \][/tex]

3. Set up the Equation:
Since angles J and K are complementary:
[tex]\[ (3x + 15) + 63 = 90 \][/tex]

4. Simplify the Equation:
Combine like terms to simplify:
[tex]\[ 3x + 15 + 63 = 90 \][/tex]
[tex]\[ 3x + 78 = 90 \][/tex]

5. Isolate the Variable:
Subtract 78 from both sides to isolate the term with x:
[tex]\[ 3x = 90 - 78 \][/tex]
[tex]\[ 3x = 12 \][/tex]

6. Solve for x:
Divide both sides by 3 to solve for x:
[tex]\[ x = \frac{12}{3} \][/tex]
[tex]\[ x = 4 \][/tex]

7. Verifying the Solution:
Now, let’s verify by finding the measure of angle J.
[tex]\[ \text{angle J} = 3x + 15 = 3(4) + 15 = 12 + 15 = 27^\circ \][/tex]

8. Conclusion:
Therefore, the value of x is [tex]\( 4 \)[/tex]. When x is 4, the measure of angle J is [tex]\( 27^\circ \)[/tex], and angle K is [tex]\( 63^\circ \)[/tex]. Both angles are complementary as their sum is:
[tex]\[ 27^\circ + 63^\circ = 90^\circ \][/tex]

Thus, the solution confirms that our original calculations are correct.
27 degrees+63=90 :)))