At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve the polynomial equation [tex]\( x^4 - 3x^3 + 3x^2 - 3x + 2 = 0 \)[/tex], we need to find all the roots of the polynomial. Let’s go through the steps to find these roots analytically:
1. Write down the polynomial:
[tex]\[ f(x) = x^4 - 3x^3 + 3x^2 - 3x + 2 \][/tex]
2. Try to factor the polynomial:
One way to factorize a polynomial is to use the Rational Root Theorem, which suggests that potential rational roots are factors of the constant term (in this case, [tex]\(2\)[/tex]) divided by factors of the leading coefficient (which is [tex]\(1\)[/tex]).
The potential rational roots are [tex]\( \pm 1, \pm 2 \)[/tex].
3. Test potential rational roots:
Let's test [tex]\(x = 1\)[/tex]:
[tex]\[ f(1) = 1^4 - 3(1)^3 + 3(1)^2 - 3(1) + 2 = 1 - 3 + 3 - 3 + 2 = 0 \][/tex]
This indicates that [tex]\(x = 1\)[/tex] is a root.
Next, we use synthetic division or polynomial division to divide [tex]\(f(x)\)[/tex] by [tex]\(x - 1\)[/tex].
4. Perform polynomial division by [tex]\(x - 1\)[/tex]:
[tex]\[ x^4 - 3x^3 + 3x^2 - 3x + 2 \div (x - 1) \][/tex]
Using synthetic division:
[tex]\[ \begin{array}{r|rrrrr} 1 & 1 & -3 & 3 & -3 & 2 \\ & & 1 & -2 & 1 & -2\\ \hline & 1 & -2 & 1 & -2 & 0\\ \end{array} \][/tex]
The quotient is [tex]\(x^3 - 2x^2 + x - 2\)[/tex].
5. Repeat the process for [tex]\(x^3 - 2x^2 + x - 2\)[/tex]:
Test [tex]\(x = 1\)[/tex] for [tex]\(x^3 - 2x^2 + x - 2\)[/tex]:
[tex]\[ f(1) = 1^3 - 2(1)^2 + 1 - 2 = 1 - 2 + 1 - 2 = -2 \neq 0 \][/tex]
Test [tex]\(x = -1\)[/tex]:
[tex]\[ f(-1) = (-1)^3 - 2(-1)^2 + (-1) - 2 = -1 - 2 - 1 - 2 = -6 \neq 0 \][/tex]
Test [tex]\( x = 2\)[/tex]:
[tex]\[ f(2) = 2^3 - 2(2)^2 + 2 - 2 = 8 - 8 + 2 - 2 = 0 \][/tex]
This indicates [tex]\(x = 2\)[/tex] is a root.
6. Perform polynomial division by [tex]\(x - 2\)[/tex]:
[tex]\[ x^3 - 2x^2 + x - 2 \div (x - 2) \][/tex]
Using synthetic division:
[tex]\[ \begin{array}{r|rrrr} 2 & 1 & -2 & 1 & -2 \\ & & 2 & 0 & 2\\ \hline & 1 & 0 & 1 & 0\\ \end{array} \][/tex]
The quotient is [tex]\(x^2 + 1\)[/tex].
7. Solve the quadratic equation [tex]\(x^2 + 1 = 0\)[/tex]:
[tex]\[ x^2 + 1 = 0 \Rightarrow x^2 = -1 \Rightarrow x = \pm i \][/tex]
8. Combine all the roots found:
Therefore, the solutions to the polynomial equation are:
[tex]\[ \boxed{x = 1, x = 2, x = -i, x = i} \][/tex]
The correct choice is:
[tex]\[ x = \pm i, x = 1, x = 2 \][/tex]
1. Write down the polynomial:
[tex]\[ f(x) = x^4 - 3x^3 + 3x^2 - 3x + 2 \][/tex]
2. Try to factor the polynomial:
One way to factorize a polynomial is to use the Rational Root Theorem, which suggests that potential rational roots are factors of the constant term (in this case, [tex]\(2\)[/tex]) divided by factors of the leading coefficient (which is [tex]\(1\)[/tex]).
The potential rational roots are [tex]\( \pm 1, \pm 2 \)[/tex].
3. Test potential rational roots:
Let's test [tex]\(x = 1\)[/tex]:
[tex]\[ f(1) = 1^4 - 3(1)^3 + 3(1)^2 - 3(1) + 2 = 1 - 3 + 3 - 3 + 2 = 0 \][/tex]
This indicates that [tex]\(x = 1\)[/tex] is a root.
Next, we use synthetic division or polynomial division to divide [tex]\(f(x)\)[/tex] by [tex]\(x - 1\)[/tex].
4. Perform polynomial division by [tex]\(x - 1\)[/tex]:
[tex]\[ x^4 - 3x^3 + 3x^2 - 3x + 2 \div (x - 1) \][/tex]
Using synthetic division:
[tex]\[ \begin{array}{r|rrrrr} 1 & 1 & -3 & 3 & -3 & 2 \\ & & 1 & -2 & 1 & -2\\ \hline & 1 & -2 & 1 & -2 & 0\\ \end{array} \][/tex]
The quotient is [tex]\(x^3 - 2x^2 + x - 2\)[/tex].
5. Repeat the process for [tex]\(x^3 - 2x^2 + x - 2\)[/tex]:
Test [tex]\(x = 1\)[/tex] for [tex]\(x^3 - 2x^2 + x - 2\)[/tex]:
[tex]\[ f(1) = 1^3 - 2(1)^2 + 1 - 2 = 1 - 2 + 1 - 2 = -2 \neq 0 \][/tex]
Test [tex]\(x = -1\)[/tex]:
[tex]\[ f(-1) = (-1)^3 - 2(-1)^2 + (-1) - 2 = -1 - 2 - 1 - 2 = -6 \neq 0 \][/tex]
Test [tex]\( x = 2\)[/tex]:
[tex]\[ f(2) = 2^3 - 2(2)^2 + 2 - 2 = 8 - 8 + 2 - 2 = 0 \][/tex]
This indicates [tex]\(x = 2\)[/tex] is a root.
6. Perform polynomial division by [tex]\(x - 2\)[/tex]:
[tex]\[ x^3 - 2x^2 + x - 2 \div (x - 2) \][/tex]
Using synthetic division:
[tex]\[ \begin{array}{r|rrrr} 2 & 1 & -2 & 1 & -2 \\ & & 2 & 0 & 2\\ \hline & 1 & 0 & 1 & 0\\ \end{array} \][/tex]
The quotient is [tex]\(x^2 + 1\)[/tex].
7. Solve the quadratic equation [tex]\(x^2 + 1 = 0\)[/tex]:
[tex]\[ x^2 + 1 = 0 \Rightarrow x^2 = -1 \Rightarrow x = \pm i \][/tex]
8. Combine all the roots found:
Therefore, the solutions to the polynomial equation are:
[tex]\[ \boxed{x = 1, x = 2, x = -i, x = i} \][/tex]
The correct choice is:
[tex]\[ x = \pm i, x = 1, x = 2 \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.