Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

When 40.0 mL of 1.00 M H₂SO₄ is added to 80.0 mL of 1.00 M NaOH at 20.0°C in a coffee cup calorimeter, the temperature of the aqueous solution increases to 29.2°C.

Given:
- Mass of the solution: 120.0 g
- Specific heat: 4.184 J/g·°C

Calculate the heat given off in the reaction using [tex]\( q = mC_p \Delta T \)[/tex].

Options:
A. 4.62 kJ
B. 10.0 kJ
C. 14.7 kJ
D. 38.5 kJ


Sagot :

To solve this problem, we need to calculate the amount of heat (denoted as [tex]\(q\)[/tex]) given off in the reaction. We'll use the formula:

[tex]\[ q = m \cdot C_p \cdot \Delta T \][/tex]

where
- [tex]\( m \)[/tex] is the mass of the solution,
- [tex]\( C_p \)[/tex] is the specific heat capacity of the solution,
- [tex]\(\Delta T \)[/tex] is the change in temperature.

Given data:
- Volume of [tex]\( H_2SO_4 = 40.0 \, \text{mL} \)[/tex]
- Concentration of [tex]\( H_2SO_4 = 1.00 \, \text{M} \)[/tex]
- Volume of [tex]\( NaOH = 80.0 \, \text{mL} \)[/tex]
- Concentration of [tex]\( NaOH = 1.00 \, \text{M} \)[/tex]
- Initial temperature [tex]\( T_{\text{initial}} = 20.00 \, ^\circ \text{C} \)[/tex]
- Final temperature [tex]\( T_{\text{final}} = 29.20 \, ^\circ \text{C} \)[/tex]
- Mass of the solution [tex]\( m = 120.0 \, \text{g} \)[/tex]
- Specific heat capacity [tex]\( C_p = 4.184 \, \text{J/g} \cdot ^\circ \text{C} \)[/tex]

Step-by-step solution:

1. Calculate the temperature change ([tex]\(\Delta T\)[/tex]):
[tex]\[ \Delta T = T_{\text{final}} - T_{\text{initial}} \][/tex]
[tex]\[ \Delta T = 29.20\, ^\circ \text{C} - 20.00\, ^\circ \text{C} = 9.20\, ^\circ \text{C} \][/tex]

2. Calculate the heat (q) using the formula:
[tex]\[ q = m \cdot C_p \cdot \Delta T \][/tex]
[tex]\[ q = 120.0\, \text{g} \cdot 4.184\, \text{J/g} \cdot ^\circ \text{C} \cdot 9.20\, ^\circ \text{C} \][/tex]
[tex]\[ q = 120.0 \cdot 4.184 \cdot 9.20 \][/tex]
[tex]\[ q = 4619.136\, \text{J} \][/tex]

3. Convert the heat from Joules to kilojoules:
[tex]\[ q_{\text{kJ}} = \frac{q}{1000} \][/tex]
[tex]\[ q_{\text{kJ}} = \frac{4619.136}{1000} \][/tex]
[tex]\[ q_{\text{kJ}} = 4.619136\, \text{kJ} \][/tex]

Therefore, the amount of heat given off in the reaction is approximately [tex]\( 4.62 \, \text{kJ} \)[/tex].

Among the given options, the correct answer is:
[tex]\[ 4.62 \, \text{kJ} \][/tex]