At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the correct statement about the given quadratic equation [tex]\( 3x^2 - 8x + 5 = 5x^2 \)[/tex], we will follow a step-by-step approach:
1. Rewrite the Equation:
First, we need to bring the equation to the standard form [tex]\( ax^2 + bx + c = 0 \)[/tex].
Given: [tex]\( 3x^2 - 8x + 5 = 5x^2 \)[/tex]
Subtract [tex]\( 5x^2 \)[/tex] from both sides to combine like terms:
[tex]\[ 3x^2 - 8x + 5 - 5x^2 = 0 \][/tex]
This simplifies to:
[tex]\[ -2x^2 - 8x + 5 = 0 \][/tex]
2. Identify the Coefficients:
Now, we need to identify the coefficients [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex].
[tex]\[ a = -2, \quad b = -8, \quad c = 5 \][/tex]
3. Calculate the Discriminant:
The discriminant ([tex]\(D\)[/tex]) of a quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex] is given by:
[tex]\[ D = b^2 - 4ac \][/tex]
Substituting the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] into the discriminant formula, we get:
[tex]\[ D = (-8)^2 - 4(-2)(5) \][/tex]
[tex]\[ D = 64 + 40 \][/tex]
[tex]\[ D = 104 \][/tex]
4. Interpret the Discriminant:
A discriminant greater than 0 indicates that the quadratic equation has two distinct real roots.
[tex]\[ D = 104 > 0 \][/tex]
Based on the result of our calculation, the discriminant is greater than 0, so the true statement about the given equation [tex]\( 3x^2 - 8x + 5 = 5x^2 \)[/tex] is:
\- "The discriminant is greater than 0, so there are two real roots."
1. Rewrite the Equation:
First, we need to bring the equation to the standard form [tex]\( ax^2 + bx + c = 0 \)[/tex].
Given: [tex]\( 3x^2 - 8x + 5 = 5x^2 \)[/tex]
Subtract [tex]\( 5x^2 \)[/tex] from both sides to combine like terms:
[tex]\[ 3x^2 - 8x + 5 - 5x^2 = 0 \][/tex]
This simplifies to:
[tex]\[ -2x^2 - 8x + 5 = 0 \][/tex]
2. Identify the Coefficients:
Now, we need to identify the coefficients [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex].
[tex]\[ a = -2, \quad b = -8, \quad c = 5 \][/tex]
3. Calculate the Discriminant:
The discriminant ([tex]\(D\)[/tex]) of a quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex] is given by:
[tex]\[ D = b^2 - 4ac \][/tex]
Substituting the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] into the discriminant formula, we get:
[tex]\[ D = (-8)^2 - 4(-2)(5) \][/tex]
[tex]\[ D = 64 + 40 \][/tex]
[tex]\[ D = 104 \][/tex]
4. Interpret the Discriminant:
A discriminant greater than 0 indicates that the quadratic equation has two distinct real roots.
[tex]\[ D = 104 > 0 \][/tex]
Based on the result of our calculation, the discriminant is greater than 0, so the true statement about the given equation [tex]\( 3x^2 - 8x + 5 = 5x^2 \)[/tex] is:
\- "The discriminant is greater than 0, so there are two real roots."
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.