Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the correct statement about the given quadratic equation [tex]\( 3x^2 - 8x + 5 = 5x^2 \)[/tex], we will follow a step-by-step approach:
1. Rewrite the Equation:
First, we need to bring the equation to the standard form [tex]\( ax^2 + bx + c = 0 \)[/tex].
Given: [tex]\( 3x^2 - 8x + 5 = 5x^2 \)[/tex]
Subtract [tex]\( 5x^2 \)[/tex] from both sides to combine like terms:
[tex]\[ 3x^2 - 8x + 5 - 5x^2 = 0 \][/tex]
This simplifies to:
[tex]\[ -2x^2 - 8x + 5 = 0 \][/tex]
2. Identify the Coefficients:
Now, we need to identify the coefficients [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex].
[tex]\[ a = -2, \quad b = -8, \quad c = 5 \][/tex]
3. Calculate the Discriminant:
The discriminant ([tex]\(D\)[/tex]) of a quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex] is given by:
[tex]\[ D = b^2 - 4ac \][/tex]
Substituting the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] into the discriminant formula, we get:
[tex]\[ D = (-8)^2 - 4(-2)(5) \][/tex]
[tex]\[ D = 64 + 40 \][/tex]
[tex]\[ D = 104 \][/tex]
4. Interpret the Discriminant:
A discriminant greater than 0 indicates that the quadratic equation has two distinct real roots.
[tex]\[ D = 104 > 0 \][/tex]
Based on the result of our calculation, the discriminant is greater than 0, so the true statement about the given equation [tex]\( 3x^2 - 8x + 5 = 5x^2 \)[/tex] is:
\- "The discriminant is greater than 0, so there are two real roots."
1. Rewrite the Equation:
First, we need to bring the equation to the standard form [tex]\( ax^2 + bx + c = 0 \)[/tex].
Given: [tex]\( 3x^2 - 8x + 5 = 5x^2 \)[/tex]
Subtract [tex]\( 5x^2 \)[/tex] from both sides to combine like terms:
[tex]\[ 3x^2 - 8x + 5 - 5x^2 = 0 \][/tex]
This simplifies to:
[tex]\[ -2x^2 - 8x + 5 = 0 \][/tex]
2. Identify the Coefficients:
Now, we need to identify the coefficients [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex].
[tex]\[ a = -2, \quad b = -8, \quad c = 5 \][/tex]
3. Calculate the Discriminant:
The discriminant ([tex]\(D\)[/tex]) of a quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex] is given by:
[tex]\[ D = b^2 - 4ac \][/tex]
Substituting the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] into the discriminant formula, we get:
[tex]\[ D = (-8)^2 - 4(-2)(5) \][/tex]
[tex]\[ D = 64 + 40 \][/tex]
[tex]\[ D = 104 \][/tex]
4. Interpret the Discriminant:
A discriminant greater than 0 indicates that the quadratic equation has two distinct real roots.
[tex]\[ D = 104 > 0 \][/tex]
Based on the result of our calculation, the discriminant is greater than 0, so the true statement about the given equation [tex]\( 3x^2 - 8x + 5 = 5x^2 \)[/tex] is:
\- "The discriminant is greater than 0, so there are two real roots."
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.