Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find the average rate of change of [tex]\( f(x) \)[/tex] over the interval [tex]\([-3, 2]\)[/tex], we will use the values of [tex]\( f(x) \)[/tex] at [tex]\( x = -3 \)[/tex] and [tex]\( x = 2 \)[/tex].
From the table, we have:
[tex]\[ f(-3) = -36 \][/tex]
[tex]\[ f(2) = 4 \][/tex]
The formula for the average rate of change of a function [tex]\( f(x) \)[/tex] over an interval [tex]\([a, b]\)[/tex] is given by:
[tex]\[ \text{Average rate of change} = \frac{f(b) - f(a)}{b - a} \][/tex]
Here, [tex]\( a = -3 \)[/tex] and [tex]\( b = 2 \)[/tex].
Substituting the values in the formula:
[tex]\[ \text{Average rate of change} = \frac{f(2) - f(-3)}{2 - (-3)} \][/tex]
Now, plug in the given values:
[tex]\[ \text{Average rate of change} = \frac{4 - (-36)}{2 - (-3)} \][/tex]
Simplify the expression by adding inside the numerator and subtracting in the denominator:
[tex]\[ \text{Average rate of change} = \frac{4 + 36}{2 + 3} \][/tex]
[tex]\[ \text{Average rate of change} = \frac{40}{5} \][/tex]
[tex]\[ \text{Average rate of change} = 8 \][/tex]
Therefore, the average rate of change of [tex]\( f(x) \)[/tex] over the interval [tex]\([-3, 2]\)[/tex] is:
[tex]\[ \boxed{8} \][/tex]
So, the correct answer is [tex]\( \text{C. 8} \)[/tex].
From the table, we have:
[tex]\[ f(-3) = -36 \][/tex]
[tex]\[ f(2) = 4 \][/tex]
The formula for the average rate of change of a function [tex]\( f(x) \)[/tex] over an interval [tex]\([a, b]\)[/tex] is given by:
[tex]\[ \text{Average rate of change} = \frac{f(b) - f(a)}{b - a} \][/tex]
Here, [tex]\( a = -3 \)[/tex] and [tex]\( b = 2 \)[/tex].
Substituting the values in the formula:
[tex]\[ \text{Average rate of change} = \frac{f(2) - f(-3)}{2 - (-3)} \][/tex]
Now, plug in the given values:
[tex]\[ \text{Average rate of change} = \frac{4 - (-36)}{2 - (-3)} \][/tex]
Simplify the expression by adding inside the numerator and subtracting in the denominator:
[tex]\[ \text{Average rate of change} = \frac{4 + 36}{2 + 3} \][/tex]
[tex]\[ \text{Average rate of change} = \frac{40}{5} \][/tex]
[tex]\[ \text{Average rate of change} = 8 \][/tex]
Therefore, the average rate of change of [tex]\( f(x) \)[/tex] over the interval [tex]\([-3, 2]\)[/tex] is:
[tex]\[ \boxed{8} \][/tex]
So, the correct answer is [tex]\( \text{C. 8} \)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.