Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the solution set for the inequality [tex]\(\frac{x}{4} \leq \frac{9}{x}\)[/tex], we will proceed through the analysis step by step.
1. Rewrite the inequality: [tex]\(\frac{x}{4} \leq \frac{9}{x}\)[/tex]
2. Clear the fraction: Multiply both sides by [tex]\(4x\)[/tex] (Note: [tex]\(x \neq 0\)[/tex] to avoid division by zero). The inequality becomes:
[tex]\[ x^2 \leq 36 \][/tex]
3. Solve the quadratic inequality:
[tex]\[ x^2 - 36 \leq 0 \][/tex]
This can be rewritten as:
[tex]\[ (x - 6)(x + 6) \leq 0 \][/tex]
4. Determine the critical points: The critical points, where the expression changes sign, are [tex]\(x = 6\)[/tex] and [tex]\(x = -6\)[/tex].
5. Analyze intervals: We will test the intervals determined by the critical points [tex]\([-6, 6]\)[/tex] to see where the inequality holds true:
- For [tex]\(x < -6\)[/tex] (e.g., [tex]\(x = -7\)[/tex]):
[tex]\[ (-7)^2 - 36 = 49 - 36 = 13 \quad (\text{positive}) \][/tex]
Therefore, the inequality [tex]\(x^2 - 36 \leq 0\)[/tex] does not hold.
- For [tex]\(-6 \leq x \leq 6\)[/tex]:
[tex]\[ x^2 - 36 \leq 0 \][/tex]
For any [tex]\(x\)[/tex] in this range, the value of [tex]\(x^2 - 36\)[/tex] is non-positive.
- For [tex]\(x > 6\)[/tex] (e.g., [tex]\(x = 7\)[/tex]):
[tex]\[ 7^2 - 36 = 49 - 36 = 13 \quad (\text{positive}) \][/tex]
Therefore, the inequality [tex]\(x^2 - 36 \leq 0\)[/tex] does not hold.
6. Conclusion: The solution set of [tex]\((x - 6)(x + 6) \leq 0\)[/tex] is the interval that lies between the critical points where the inequality holds, inclusive of the critical points themselves.
Thus, the solution set of [tex]\(\frac{x}{4} \leq \frac{9}{x}\)[/tex] is:
[tex]\[ \boxed{[-6, 6]} \][/tex]
1. Rewrite the inequality: [tex]\(\frac{x}{4} \leq \frac{9}{x}\)[/tex]
2. Clear the fraction: Multiply both sides by [tex]\(4x\)[/tex] (Note: [tex]\(x \neq 0\)[/tex] to avoid division by zero). The inequality becomes:
[tex]\[ x^2 \leq 36 \][/tex]
3. Solve the quadratic inequality:
[tex]\[ x^2 - 36 \leq 0 \][/tex]
This can be rewritten as:
[tex]\[ (x - 6)(x + 6) \leq 0 \][/tex]
4. Determine the critical points: The critical points, where the expression changes sign, are [tex]\(x = 6\)[/tex] and [tex]\(x = -6\)[/tex].
5. Analyze intervals: We will test the intervals determined by the critical points [tex]\([-6, 6]\)[/tex] to see where the inequality holds true:
- For [tex]\(x < -6\)[/tex] (e.g., [tex]\(x = -7\)[/tex]):
[tex]\[ (-7)^2 - 36 = 49 - 36 = 13 \quad (\text{positive}) \][/tex]
Therefore, the inequality [tex]\(x^2 - 36 \leq 0\)[/tex] does not hold.
- For [tex]\(-6 \leq x \leq 6\)[/tex]:
[tex]\[ x^2 - 36 \leq 0 \][/tex]
For any [tex]\(x\)[/tex] in this range, the value of [tex]\(x^2 - 36\)[/tex] is non-positive.
- For [tex]\(x > 6\)[/tex] (e.g., [tex]\(x = 7\)[/tex]):
[tex]\[ 7^2 - 36 = 49 - 36 = 13 \quad (\text{positive}) \][/tex]
Therefore, the inequality [tex]\(x^2 - 36 \leq 0\)[/tex] does not hold.
6. Conclusion: The solution set of [tex]\((x - 6)(x + 6) \leq 0\)[/tex] is the interval that lies between the critical points where the inequality holds, inclusive of the critical points themselves.
Thus, the solution set of [tex]\(\frac{x}{4} \leq \frac{9}{x}\)[/tex] is:
[tex]\[ \boxed{[-6, 6]} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.