Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the regression equation that models the given data, we can follow these steps:
1. Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ \bar{x} = \frac{\sum x}{n} \quad \text{and} \quad \bar{y} = \frac{\sum y}{n} \][/tex]
Given the values [tex]\(\sum x = 632\)[/tex], [tex]\(\sum y = 404\)[/tex], and [tex]\( n = 5 \)[/tex]:
[tex]\[ \bar{x} = \frac{632}{5} = 126.4 \quad \text{and} \quad \bar{y} = \frac{404}{5} = 80.8 \][/tex]
2. Calculate the slope ( [tex]\( b \)[/tex] ) of the regression line:
[tex]\[ b = \frac{\sum (xy) - n \cdot \bar{x} \cdot \bar{y}}{\sum (x^2) - n \cdot \bar{x}^2} \][/tex]
Using the given data [tex]\(\sum xy = 51448\)[/tex] and [tex]\(\sum x^2 = 80142\)[/tex]:
[tex]\[ b = \frac{51448 - 5 \cdot 126.4 \cdot 80.8}{80142 - 5 \cdot (126.4)^2} \][/tex]
Calculating the numerator and denominator separately:
[tex]\[ \text{Numerator} = 51448 - 5 \cdot 126.4 \cdot 80.8 \approx 51448 - 51065.6 = 382.4 \][/tex]
[tex]\[ \text{Denominator} = 80142 - 5 \cdot (126.4)^2 \approx 80142 - 80084.8 = 257.2 \][/tex]
So, the slope [tex]\( b \)[/tex] is:
[tex]\[ b = \frac{382.4}{257.2} \approx 1.48678 \][/tex]
3. Calculate the intercept ( [tex]\( a \)[/tex] ):
[tex]\[ a = \bar{y} - b \cdot \bar{x} \][/tex]
[tex]\[ a = 80.8 - 1.48678 \cdot 126.4 \approx 80.8 - 187.92908 = -107.12908 \][/tex]
4. Form the regression equation:
The regression equation is of the form [tex]\( y = a + bx \)[/tex].
Given the values calculated:
[tex]\[ y = -107.12908 + 1.48678x \][/tex]
So, the regression equation that correctly models the data is:
[tex]\[ \boxed{y = -107.12908 + 1.48678x} \][/tex]
1. Calculate the means of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ \bar{x} = \frac{\sum x}{n} \quad \text{and} \quad \bar{y} = \frac{\sum y}{n} \][/tex]
Given the values [tex]\(\sum x = 632\)[/tex], [tex]\(\sum y = 404\)[/tex], and [tex]\( n = 5 \)[/tex]:
[tex]\[ \bar{x} = \frac{632}{5} = 126.4 \quad \text{and} \quad \bar{y} = \frac{404}{5} = 80.8 \][/tex]
2. Calculate the slope ( [tex]\( b \)[/tex] ) of the regression line:
[tex]\[ b = \frac{\sum (xy) - n \cdot \bar{x} \cdot \bar{y}}{\sum (x^2) - n \cdot \bar{x}^2} \][/tex]
Using the given data [tex]\(\sum xy = 51448\)[/tex] and [tex]\(\sum x^2 = 80142\)[/tex]:
[tex]\[ b = \frac{51448 - 5 \cdot 126.4 \cdot 80.8}{80142 - 5 \cdot (126.4)^2} \][/tex]
Calculating the numerator and denominator separately:
[tex]\[ \text{Numerator} = 51448 - 5 \cdot 126.4 \cdot 80.8 \approx 51448 - 51065.6 = 382.4 \][/tex]
[tex]\[ \text{Denominator} = 80142 - 5 \cdot (126.4)^2 \approx 80142 - 80084.8 = 257.2 \][/tex]
So, the slope [tex]\( b \)[/tex] is:
[tex]\[ b = \frac{382.4}{257.2} \approx 1.48678 \][/tex]
3. Calculate the intercept ( [tex]\( a \)[/tex] ):
[tex]\[ a = \bar{y} - b \cdot \bar{x} \][/tex]
[tex]\[ a = 80.8 - 1.48678 \cdot 126.4 \approx 80.8 - 187.92908 = -107.12908 \][/tex]
4. Form the regression equation:
The regression equation is of the form [tex]\( y = a + bx \)[/tex].
Given the values calculated:
[tex]\[ y = -107.12908 + 1.48678x \][/tex]
So, the regression equation that correctly models the data is:
[tex]\[ \boxed{y = -107.12908 + 1.48678x} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.