At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

1. Multiply and reduce to a single polynomial.

a. [tex]\( 4x^2(6x - 1) \)[/tex]


Sagot :

To address the given problem, let's follow each step in the process of multiplying and reducing the polynomial [tex]\(4x^2(6x - 1)\)[/tex].

1. Given Expression:
[tex]\[ 4x^2(6x - 1) \][/tex]

2. Distribute [tex]\(4x^2\)[/tex] to each term inside the parentheses:
* The first term inside the parentheses is [tex]\(6x\)[/tex]. Multiply [tex]\(4x^2\)[/tex] by [tex]\(6x\)[/tex]:
[tex]\[ 4x^2 \times 6x = 24x^3 \][/tex]
* The second term inside the parentheses is [tex]\(-1\)[/tex]. Multiply [tex]\(4x^2\)[/tex] by [tex]\(-1\)[/tex]:
[tex]\[ 4x^2 \times (-1) = -4x^2 \][/tex]

3. Combine the results from the distribution step:
[tex]\[ 24x^3 - 4x^2 \][/tex]

This is the fully expanded and reduced form of the polynomial. Therefore, the final single polynomial expression after multiplication is:
[tex]\[ 24x^3 - 4x^2 \][/tex]