Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine which of the given equations corresponds to a conic section formed when a plane intersects a cone parallel to the base, let’s analyze each given equation:
1. [tex]\( x^2 + y^2 = 3^2 \)[/tex]
2. [tex]\( \frac{x^2}{2^2} + \frac{y^2}{3^2} = 1 \)[/tex]
3. [tex]\( x^2 = 8 y \)[/tex]
4. [tex]\( \frac{x^2}{2^2} - \frac{y^2}{3^2} = 1 \)[/tex]
### Step-by-Step Analysis:
1. Equation [tex]\( x^2 + y^2 = 3^2 \)[/tex]:
- This equation is in the form of [tex]\( x^2 + y^2 = r^2 \)[/tex], which represents a circle centered at the origin with radius [tex]\(\sqrt{9} = 3\)[/tex].
- Conic section: Circle
2. Equation [tex]\( \frac{x^2}{2^2} + \frac{y^2}{3^2} = 1 \)[/tex]:
- This equation is in the form of [tex]\( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \)[/tex], which represents an ellipse centered at the origin with semi-major axis 3 and semi-minor axis 2.
- Conic section: Ellipse
3. Equation [tex]\( x^2 = 8y \)[/tex]:
- This equation is in the form of [tex]\( x^2 = 4ay \)[/tex], which represents a parabola that opens upwards.
- Conic section: Parabola
4. Equation [tex]\( \frac{x^2}{2^2} - \frac{y^2}{3^2} = 1 \)[/tex]:
- This equation is in the form of [tex]\( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \)[/tex], which represents a hyperbola centered at the origin.
- Conic section: Hyperbola
### Conclusion:
- A circle is specifically formed when a plane intersects a cone parallel to the base of the cone.
- Among the given equations, [tex]\( x^2 + y^2 = 3^2 \)[/tex] represents a circle.
Therefore, the correct equation corresponding to a conic section formed when a plane intersects a cone parallel to the base is:
[tex]\[ x^2 + y^2 = 3^2 \][/tex]
So, the correct choice is:
[tex]\[ \boxed{1} \][/tex]
1. [tex]\( x^2 + y^2 = 3^2 \)[/tex]
2. [tex]\( \frac{x^2}{2^2} + \frac{y^2}{3^2} = 1 \)[/tex]
3. [tex]\( x^2 = 8 y \)[/tex]
4. [tex]\( \frac{x^2}{2^2} - \frac{y^2}{3^2} = 1 \)[/tex]
### Step-by-Step Analysis:
1. Equation [tex]\( x^2 + y^2 = 3^2 \)[/tex]:
- This equation is in the form of [tex]\( x^2 + y^2 = r^2 \)[/tex], which represents a circle centered at the origin with radius [tex]\(\sqrt{9} = 3\)[/tex].
- Conic section: Circle
2. Equation [tex]\( \frac{x^2}{2^2} + \frac{y^2}{3^2} = 1 \)[/tex]:
- This equation is in the form of [tex]\( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \)[/tex], which represents an ellipse centered at the origin with semi-major axis 3 and semi-minor axis 2.
- Conic section: Ellipse
3. Equation [tex]\( x^2 = 8y \)[/tex]:
- This equation is in the form of [tex]\( x^2 = 4ay \)[/tex], which represents a parabola that opens upwards.
- Conic section: Parabola
4. Equation [tex]\( \frac{x^2}{2^2} - \frac{y^2}{3^2} = 1 \)[/tex]:
- This equation is in the form of [tex]\( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \)[/tex], which represents a hyperbola centered at the origin.
- Conic section: Hyperbola
### Conclusion:
- A circle is specifically formed when a plane intersects a cone parallel to the base of the cone.
- Among the given equations, [tex]\( x^2 + y^2 = 3^2 \)[/tex] represents a circle.
Therefore, the correct equation corresponding to a conic section formed when a plane intersects a cone parallel to the base is:
[tex]\[ x^2 + y^2 = 3^2 \][/tex]
So, the correct choice is:
[tex]\[ \boxed{1} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.