Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To find the greatest common factor (GCF) of the expressions [tex]\( 12 w^5 v^3 x^2 \)[/tex] and [tex]\( 16 w^4 x^7 \)[/tex], follow these steps:
1. Identify the coefficients:
- The coefficient of the first expression, [tex]\( 12 w^5 v^3 x^2 \)[/tex], is 12.
- The coefficient of the second expression, [tex]\( 16 w^4 x^7 \)[/tex], is 16.
Find the greatest common divisor (GCD) of these coefficients:
- The prime factorization of 12 is [tex]\( 2^2 \times 3 \)[/tex].
- The prime factorization of 16 is [tex]\( 2^4 \)[/tex].
The GCD of 12 and 16 is [tex]\( 2^2 = 4 \)[/tex].
2. Determine the common variables with the lowest powers:
- For [tex]\( w \)[/tex]:
- The first expression has [tex]\( w^5 \)[/tex].
- The second expression has [tex]\( w^4 \)[/tex].
- The lowest power of [tex]\( w \)[/tex] common to both expressions is [tex]\( w^4 \)[/tex].
- For [tex]\( v \)[/tex]:
- The first expression has [tex]\( v^3 \)[/tex].
- The second expression does not contain [tex]\( v \)[/tex], hence the common factor in terms of [tex]\( v \)[/tex] is [tex]\( v^0 = 1 \)[/tex].
- For [tex]\( x \)[/tex]:
- The first expression has [tex]\( x^2 \)[/tex].
- The second expression has [tex]\( x^7 \)[/tex].
- The lowest power of [tex]\( x \)[/tex] common to both expressions is [tex]\( x^2 \)[/tex].
3. Combine the results:
- The GCD of the coefficients is 4.
- The common factors of the variables are [tex]\( w^4 \)[/tex] and [tex]\( x^2 \)[/tex].
Thus, the greatest common factor (GCF) of the expressions [tex]\( 12 w^5 v^3 x^2 \)[/tex] and [tex]\( 16 w^4 x^7 \)[/tex] is:
[tex]\[ 4 w^4 x^2 \][/tex]
1. Identify the coefficients:
- The coefficient of the first expression, [tex]\( 12 w^5 v^3 x^2 \)[/tex], is 12.
- The coefficient of the second expression, [tex]\( 16 w^4 x^7 \)[/tex], is 16.
Find the greatest common divisor (GCD) of these coefficients:
- The prime factorization of 12 is [tex]\( 2^2 \times 3 \)[/tex].
- The prime factorization of 16 is [tex]\( 2^4 \)[/tex].
The GCD of 12 and 16 is [tex]\( 2^2 = 4 \)[/tex].
2. Determine the common variables with the lowest powers:
- For [tex]\( w \)[/tex]:
- The first expression has [tex]\( w^5 \)[/tex].
- The second expression has [tex]\( w^4 \)[/tex].
- The lowest power of [tex]\( w \)[/tex] common to both expressions is [tex]\( w^4 \)[/tex].
- For [tex]\( v \)[/tex]:
- The first expression has [tex]\( v^3 \)[/tex].
- The second expression does not contain [tex]\( v \)[/tex], hence the common factor in terms of [tex]\( v \)[/tex] is [tex]\( v^0 = 1 \)[/tex].
- For [tex]\( x \)[/tex]:
- The first expression has [tex]\( x^2 \)[/tex].
- The second expression has [tex]\( x^7 \)[/tex].
- The lowest power of [tex]\( x \)[/tex] common to both expressions is [tex]\( x^2 \)[/tex].
3. Combine the results:
- The GCD of the coefficients is 4.
- The common factors of the variables are [tex]\( w^4 \)[/tex] and [tex]\( x^2 \)[/tex].
Thus, the greatest common factor (GCF) of the expressions [tex]\( 12 w^5 v^3 x^2 \)[/tex] and [tex]\( 16 w^4 x^7 \)[/tex] is:
[tex]\[ 4 w^4 x^2 \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.