Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve the equation [tex]\( 8^{2n} = \frac{1}{64} \)[/tex], we will follow these steps:
1. Express the equation in terms of powers of the same base:
First, recognize that [tex]\( 8 \)[/tex] and [tex]\( 64 \)[/tex] can be expressed as powers of 2. We know:
[tex]\[ 8 = 2^3 \quad \text{and} \quad 64 = 2^6 \][/tex]
Thus, the equation [tex]\( 8^{2n} = \frac{1}{64} \)[/tex] can be rewritten as:
[tex]\[ (2^3)^{2n} = \frac{1}{2^6} \][/tex]
2. Simplify the exponents:
Using the power of a power property [tex]\((a^m)^n = a^{mn}\)[/tex], we rewrite the left side as:
[tex]\[ 2^{6n} = \frac{1}{2^6} \][/tex]
3. Rewrite the right side as a negative exponent:
Recall that [tex]\(\frac{1}{a^m} = a^{-m}\)[/tex]:
[tex]\[ 2^{6n} = 2^{-6} \][/tex]
4. Equate the exponents:
Since the bases are equal, the exponents must be equal. Thus:
[tex]\[ 6n = -6 \][/tex]
5. Solve for [tex]\( n \)[/tex]:
[tex]\[ n = \frac{-6}{6} = -1 \][/tex]
However, from the initial transformation, there are multiple solutions due to the periodicity of exponents in the complex plane. Evaluating all the possible roots, we get:
[tex]\[ n = -1, \quad -1 + \frac{\pi i}{\ln(8)}, \quad -1 - \frac{\pi i}{\ln(8)}, \quad -1 + \frac{2 \pi i}{\ln(8)}, \quad -1 - \frac{2 \pi i}{\ln(8)}, \quad \ldots \][/tex]
Therefore, the full set of solutions is:
[tex]\[ n = -1.00000000000000, \quad -1.0 - 3.0215734278848i, \quad -1.0 - 1.5107867139424i, \quad -1.0 + 1.5107867139424i, \quad -1.0 + 3.0215734278848i, \quad -1.0 + 4.53236014182719i \][/tex]
In summary, the exact values for [tex]\( n \)[/tex] that satisfy the equation [tex]\( 8^{2n} = \frac{1}{64} \)[/tex] are [tex]\( -1.00000000000000 \)[/tex] and its complex counterparts:
[tex]\[ -1.0 - 3.0215734278848i, \quad -1.0 - 1.5107867139424i, \quad -1.0 + 1.5107867139424i, \quad -1.0 + 3.0215734278848i, \quad -1.0 + 4.53236014182719i \][/tex]
1. Express the equation in terms of powers of the same base:
First, recognize that [tex]\( 8 \)[/tex] and [tex]\( 64 \)[/tex] can be expressed as powers of 2. We know:
[tex]\[ 8 = 2^3 \quad \text{and} \quad 64 = 2^6 \][/tex]
Thus, the equation [tex]\( 8^{2n} = \frac{1}{64} \)[/tex] can be rewritten as:
[tex]\[ (2^3)^{2n} = \frac{1}{2^6} \][/tex]
2. Simplify the exponents:
Using the power of a power property [tex]\((a^m)^n = a^{mn}\)[/tex], we rewrite the left side as:
[tex]\[ 2^{6n} = \frac{1}{2^6} \][/tex]
3. Rewrite the right side as a negative exponent:
Recall that [tex]\(\frac{1}{a^m} = a^{-m}\)[/tex]:
[tex]\[ 2^{6n} = 2^{-6} \][/tex]
4. Equate the exponents:
Since the bases are equal, the exponents must be equal. Thus:
[tex]\[ 6n = -6 \][/tex]
5. Solve for [tex]\( n \)[/tex]:
[tex]\[ n = \frac{-6}{6} = -1 \][/tex]
However, from the initial transformation, there are multiple solutions due to the periodicity of exponents in the complex plane. Evaluating all the possible roots, we get:
[tex]\[ n = -1, \quad -1 + \frac{\pi i}{\ln(8)}, \quad -1 - \frac{\pi i}{\ln(8)}, \quad -1 + \frac{2 \pi i}{\ln(8)}, \quad -1 - \frac{2 \pi i}{\ln(8)}, \quad \ldots \][/tex]
Therefore, the full set of solutions is:
[tex]\[ n = -1.00000000000000, \quad -1.0 - 3.0215734278848i, \quad -1.0 - 1.5107867139424i, \quad -1.0 + 1.5107867139424i, \quad -1.0 + 3.0215734278848i, \quad -1.0 + 4.53236014182719i \][/tex]
In summary, the exact values for [tex]\( n \)[/tex] that satisfy the equation [tex]\( 8^{2n} = \frac{1}{64} \)[/tex] are [tex]\( -1.00000000000000 \)[/tex] and its complex counterparts:
[tex]\[ -1.0 - 3.0215734278848i, \quad -1.0 - 1.5107867139424i, \quad -1.0 + 1.5107867139424i, \quad -1.0 + 3.0215734278848i, \quad -1.0 + 4.53236014182719i \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.