Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve the equation [tex]\( 8^{2n} = \frac{1}{64} \)[/tex], we will follow these steps:
1. Express the equation in terms of powers of the same base:
First, recognize that [tex]\( 8 \)[/tex] and [tex]\( 64 \)[/tex] can be expressed as powers of 2. We know:
[tex]\[ 8 = 2^3 \quad \text{and} \quad 64 = 2^6 \][/tex]
Thus, the equation [tex]\( 8^{2n} = \frac{1}{64} \)[/tex] can be rewritten as:
[tex]\[ (2^3)^{2n} = \frac{1}{2^6} \][/tex]
2. Simplify the exponents:
Using the power of a power property [tex]\((a^m)^n = a^{mn}\)[/tex], we rewrite the left side as:
[tex]\[ 2^{6n} = \frac{1}{2^6} \][/tex]
3. Rewrite the right side as a negative exponent:
Recall that [tex]\(\frac{1}{a^m} = a^{-m}\)[/tex]:
[tex]\[ 2^{6n} = 2^{-6} \][/tex]
4. Equate the exponents:
Since the bases are equal, the exponents must be equal. Thus:
[tex]\[ 6n = -6 \][/tex]
5. Solve for [tex]\( n \)[/tex]:
[tex]\[ n = \frac{-6}{6} = -1 \][/tex]
However, from the initial transformation, there are multiple solutions due to the periodicity of exponents in the complex plane. Evaluating all the possible roots, we get:
[tex]\[ n = -1, \quad -1 + \frac{\pi i}{\ln(8)}, \quad -1 - \frac{\pi i}{\ln(8)}, \quad -1 + \frac{2 \pi i}{\ln(8)}, \quad -1 - \frac{2 \pi i}{\ln(8)}, \quad \ldots \][/tex]
Therefore, the full set of solutions is:
[tex]\[ n = -1.00000000000000, \quad -1.0 - 3.0215734278848i, \quad -1.0 - 1.5107867139424i, \quad -1.0 + 1.5107867139424i, \quad -1.0 + 3.0215734278848i, \quad -1.0 + 4.53236014182719i \][/tex]
In summary, the exact values for [tex]\( n \)[/tex] that satisfy the equation [tex]\( 8^{2n} = \frac{1}{64} \)[/tex] are [tex]\( -1.00000000000000 \)[/tex] and its complex counterparts:
[tex]\[ -1.0 - 3.0215734278848i, \quad -1.0 - 1.5107867139424i, \quad -1.0 + 1.5107867139424i, \quad -1.0 + 3.0215734278848i, \quad -1.0 + 4.53236014182719i \][/tex]
1. Express the equation in terms of powers of the same base:
First, recognize that [tex]\( 8 \)[/tex] and [tex]\( 64 \)[/tex] can be expressed as powers of 2. We know:
[tex]\[ 8 = 2^3 \quad \text{and} \quad 64 = 2^6 \][/tex]
Thus, the equation [tex]\( 8^{2n} = \frac{1}{64} \)[/tex] can be rewritten as:
[tex]\[ (2^3)^{2n} = \frac{1}{2^6} \][/tex]
2. Simplify the exponents:
Using the power of a power property [tex]\((a^m)^n = a^{mn}\)[/tex], we rewrite the left side as:
[tex]\[ 2^{6n} = \frac{1}{2^6} \][/tex]
3. Rewrite the right side as a negative exponent:
Recall that [tex]\(\frac{1}{a^m} = a^{-m}\)[/tex]:
[tex]\[ 2^{6n} = 2^{-6} \][/tex]
4. Equate the exponents:
Since the bases are equal, the exponents must be equal. Thus:
[tex]\[ 6n = -6 \][/tex]
5. Solve for [tex]\( n \)[/tex]:
[tex]\[ n = \frac{-6}{6} = -1 \][/tex]
However, from the initial transformation, there are multiple solutions due to the periodicity of exponents in the complex plane. Evaluating all the possible roots, we get:
[tex]\[ n = -1, \quad -1 + \frac{\pi i}{\ln(8)}, \quad -1 - \frac{\pi i}{\ln(8)}, \quad -1 + \frac{2 \pi i}{\ln(8)}, \quad -1 - \frac{2 \pi i}{\ln(8)}, \quad \ldots \][/tex]
Therefore, the full set of solutions is:
[tex]\[ n = -1.00000000000000, \quad -1.0 - 3.0215734278848i, \quad -1.0 - 1.5107867139424i, \quad -1.0 + 1.5107867139424i, \quad -1.0 + 3.0215734278848i, \quad -1.0 + 4.53236014182719i \][/tex]
In summary, the exact values for [tex]\( n \)[/tex] that satisfy the equation [tex]\( 8^{2n} = \frac{1}{64} \)[/tex] are [tex]\( -1.00000000000000 \)[/tex] and its complex counterparts:
[tex]\[ -1.0 - 3.0215734278848i, \quad -1.0 - 1.5107867139424i, \quad -1.0 + 1.5107867139424i, \quad -1.0 + 3.0215734278848i, \quad -1.0 + 4.53236014182719i \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.