Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve the equation [tex]\( 8^{2n} = \frac{1}{64} \)[/tex], we will follow these steps:
1. Express the equation in terms of powers of the same base:
First, recognize that [tex]\( 8 \)[/tex] and [tex]\( 64 \)[/tex] can be expressed as powers of 2. We know:
[tex]\[ 8 = 2^3 \quad \text{and} \quad 64 = 2^6 \][/tex]
Thus, the equation [tex]\( 8^{2n} = \frac{1}{64} \)[/tex] can be rewritten as:
[tex]\[ (2^3)^{2n} = \frac{1}{2^6} \][/tex]
2. Simplify the exponents:
Using the power of a power property [tex]\((a^m)^n = a^{mn}\)[/tex], we rewrite the left side as:
[tex]\[ 2^{6n} = \frac{1}{2^6} \][/tex]
3. Rewrite the right side as a negative exponent:
Recall that [tex]\(\frac{1}{a^m} = a^{-m}\)[/tex]:
[tex]\[ 2^{6n} = 2^{-6} \][/tex]
4. Equate the exponents:
Since the bases are equal, the exponents must be equal. Thus:
[tex]\[ 6n = -6 \][/tex]
5. Solve for [tex]\( n \)[/tex]:
[tex]\[ n = \frac{-6}{6} = -1 \][/tex]
However, from the initial transformation, there are multiple solutions due to the periodicity of exponents in the complex plane. Evaluating all the possible roots, we get:
[tex]\[ n = -1, \quad -1 + \frac{\pi i}{\ln(8)}, \quad -1 - \frac{\pi i}{\ln(8)}, \quad -1 + \frac{2 \pi i}{\ln(8)}, \quad -1 - \frac{2 \pi i}{\ln(8)}, \quad \ldots \][/tex]
Therefore, the full set of solutions is:
[tex]\[ n = -1.00000000000000, \quad -1.0 - 3.0215734278848i, \quad -1.0 - 1.5107867139424i, \quad -1.0 + 1.5107867139424i, \quad -1.0 + 3.0215734278848i, \quad -1.0 + 4.53236014182719i \][/tex]
In summary, the exact values for [tex]\( n \)[/tex] that satisfy the equation [tex]\( 8^{2n} = \frac{1}{64} \)[/tex] are [tex]\( -1.00000000000000 \)[/tex] and its complex counterparts:
[tex]\[ -1.0 - 3.0215734278848i, \quad -1.0 - 1.5107867139424i, \quad -1.0 + 1.5107867139424i, \quad -1.0 + 3.0215734278848i, \quad -1.0 + 4.53236014182719i \][/tex]
1. Express the equation in terms of powers of the same base:
First, recognize that [tex]\( 8 \)[/tex] and [tex]\( 64 \)[/tex] can be expressed as powers of 2. We know:
[tex]\[ 8 = 2^3 \quad \text{and} \quad 64 = 2^6 \][/tex]
Thus, the equation [tex]\( 8^{2n} = \frac{1}{64} \)[/tex] can be rewritten as:
[tex]\[ (2^3)^{2n} = \frac{1}{2^6} \][/tex]
2. Simplify the exponents:
Using the power of a power property [tex]\((a^m)^n = a^{mn}\)[/tex], we rewrite the left side as:
[tex]\[ 2^{6n} = \frac{1}{2^6} \][/tex]
3. Rewrite the right side as a negative exponent:
Recall that [tex]\(\frac{1}{a^m} = a^{-m}\)[/tex]:
[tex]\[ 2^{6n} = 2^{-6} \][/tex]
4. Equate the exponents:
Since the bases are equal, the exponents must be equal. Thus:
[tex]\[ 6n = -6 \][/tex]
5. Solve for [tex]\( n \)[/tex]:
[tex]\[ n = \frac{-6}{6} = -1 \][/tex]
However, from the initial transformation, there are multiple solutions due to the periodicity of exponents in the complex plane. Evaluating all the possible roots, we get:
[tex]\[ n = -1, \quad -1 + \frac{\pi i}{\ln(8)}, \quad -1 - \frac{\pi i}{\ln(8)}, \quad -1 + \frac{2 \pi i}{\ln(8)}, \quad -1 - \frac{2 \pi i}{\ln(8)}, \quad \ldots \][/tex]
Therefore, the full set of solutions is:
[tex]\[ n = -1.00000000000000, \quad -1.0 - 3.0215734278848i, \quad -1.0 - 1.5107867139424i, \quad -1.0 + 1.5107867139424i, \quad -1.0 + 3.0215734278848i, \quad -1.0 + 4.53236014182719i \][/tex]
In summary, the exact values for [tex]\( n \)[/tex] that satisfy the equation [tex]\( 8^{2n} = \frac{1}{64} \)[/tex] are [tex]\( -1.00000000000000 \)[/tex] and its complex counterparts:
[tex]\[ -1.0 - 3.0215734278848i, \quad -1.0 - 1.5107867139424i, \quad -1.0 + 1.5107867139424i, \quad -1.0 + 3.0215734278848i, \quad -1.0 + 4.53236014182719i \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.