Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

If [tex]\(a(x) = 2x - 4\)[/tex] and [tex]\(b(x) = x + 2\)[/tex], which of the following expressions produces a quadratic function?

A. [tex]\((ab)(x)\)[/tex]

B. [tex]\(\left(\frac{a}{b}\right)(x)\)[/tex]

C. [tex]\((a - b)(x)\)[/tex]

D. [tex]\((a + b)(x)\)[/tex]

Sagot :

To determine which of the given expressions produces a quadratic function for the functions [tex]\(a(x) = 2x - 4\)[/tex] and [tex]\(b(x) = x + 2\)[/tex], let's evaluate each of the possible expressions step by step.

### Expression 1: [tex]\(\left(\frac{a}{b}\right)(x)\)[/tex]

First, we find the expression [tex]\(\left(\frac{a}{b}\right)(x)\)[/tex]:

[tex]\[ \left(\frac{a}{b}\right)(x) = \frac{a(x)}{b(x)} = \frac{2x - 4}{x + 2} \][/tex]

This is a rational function, not a quadratic function. A quadratic function has the form [tex]\(ax^2 + bx + c\)[/tex], which is a polynomial of degree 2. The rational function [tex]\(\frac{2x - 4}{x + 2}\)[/tex] does not simplify to a quadratic form.

### Expression 2: [tex]\((a - b)(x)\)[/tex]

Next, we find the expression [tex]\((a - b)(x)\)[/tex]:

[tex]\[ (a - b)(x) = a(x) - b(x) = (2x - 4) - (x + 2) = 2x - 4 - x - 2 = x - 6 \][/tex]

This is a linear function, [tex]\(x - 6\)[/tex], which is a polynomial of degree 1. Therefore, it is not a quadratic function.

### Expression 3: [tex]\((a + b)(x)\)[/tex]

Finally, we find the expression [tex]\((a + b)(x)\)[/tex]:

[tex]\[ (a + b)(x) = a(x) + b(x) = (2x - 4) + (x + 2) = 2x - 4 + x + 2 = 3x - 2 \][/tex]

This is also a linear function, [tex]\(3x - 2\)[/tex], which is a polynomial of degree 1. Therefore, it is not a quadratic function.

### Conclusion:
None of the given expressions, [tex]\(\left(\frac{a}{b}\right)(x)\)[/tex], [tex]\((a - b)(x)\)[/tex], or [tex]\((a + b)(x)\)[/tex], produce a quadratic function. Thus, the result is that none of these expressions are quadratic.

So the answer is:
[tex]\[ \boxed{\text{None}} \][/tex]