At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Select all the correct answers.

What is the simplest form of this expression?
[tex]\[
\left(x^{-3}\right)^{\frac{1}{3}}
\][/tex]

A. [tex]\(x^{-1}\)[/tex]

B. [tex]\(x^9\)[/tex]

C. [tex]\(\frac{1}{x^9}\)[/tex]

D. [tex]\(\frac{1}{x}\)[/tex]


Sagot :

Let's simplify the expression [tex]\(\left(x^{-3}\right)^{\frac{1}{3}}\)[/tex] step-by-step.

1. Understand the expression: We have [tex]\((x^{-3})^{\frac{1}{3}}\)[/tex].

2. Apply the property of exponents: When you have an expression in the form [tex]\((a^m)^n\)[/tex], it simplifies to [tex]\(a^{m \cdot n}\)[/tex].

3. Calculate the exponent:
- Here, [tex]\(a = x\)[/tex], [tex]\(m = -3\)[/tex], and [tex]\(n = \frac{1}{3}\)[/tex].
- The new exponent will be [tex]\(m \cdot n = -3 \cdot \frac{1}{3} = -1\)[/tex].

4. Rewrite the expression:
[tex]\[ (x^{-3})^{\frac{1}{3}} = x^{-1} \][/tex]

5. Recognize the equivalent forms:
- We know that [tex]\(x^{-1} = \frac{1}{x}\)[/tex].

Thus, the simplest form of the expression [tex]\(\left(x^{-3}\right)^{\frac{1}{3}}\)[/tex] is [tex]\(x^{-1}\)[/tex], which can also be written as [tex]\(\frac{1}{x}\)[/tex].

Correct answers:
- [tex]\(x^{-1}\)[/tex]
- [tex]\(\frac{1}{x}\)[/tex]

The other options [tex]\(x^9\)[/tex] and [tex]\(\frac{1}{x^9}\)[/tex] do not match the simplified form of the given expression.