Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the correct prime factorization of 144, we need to examine each of the given options:
1. [tex]\(12^2\)[/tex]
2. [tex]\(2^2 \cdot 3^4\)[/tex]
3. [tex]\(2^4 \cdot 3^2\)[/tex]
4. [tex]\(2 \cdot 3\)[/tex]
Let's analyze each option:
### Option 1: [tex]\(12^2\)[/tex]
[tex]\[ 12^2 = 12 \times 12 = 144 \][/tex]
So, this calculation correctly produces the number 144. However, [tex]\(12^2\)[/tex] is not a prime factorization because 12 itself can be further factored into primes.
### Option 2: [tex]\(2^2 \cdot 3^4\)[/tex]
[tex]\[ 2^2 \cdot 3^4 = 4 \cdot 81 = 324 \][/tex]
This does not equal 144, so this option is not correct.
### Option 3: [tex]\(2^4 \cdot 3^2\)[/tex]
[tex]\[ 2^4 \cdot 3^2 = 16 \cdot 9 = 144 \][/tex]
This calculation gives us 144, and it uses prime factors (2 and 3). Therefore, this is a valid prime factorization of 144.
### Option 4: [tex]\(2 \cdot 3\)[/tex]
[tex]\[ 2 \cdot 3 = 6 \][/tex]
This is far from 144, so this cannot be the correct prime factorization.
### Conclusion:
The correct prime factorization of 144 is:
[tex]\[ 2^4 \cdot 3^2 \][/tex]
1. [tex]\(12^2\)[/tex]
2. [tex]\(2^2 \cdot 3^4\)[/tex]
3. [tex]\(2^4 \cdot 3^2\)[/tex]
4. [tex]\(2 \cdot 3\)[/tex]
Let's analyze each option:
### Option 1: [tex]\(12^2\)[/tex]
[tex]\[ 12^2 = 12 \times 12 = 144 \][/tex]
So, this calculation correctly produces the number 144. However, [tex]\(12^2\)[/tex] is not a prime factorization because 12 itself can be further factored into primes.
### Option 2: [tex]\(2^2 \cdot 3^4\)[/tex]
[tex]\[ 2^2 \cdot 3^4 = 4 \cdot 81 = 324 \][/tex]
This does not equal 144, so this option is not correct.
### Option 3: [tex]\(2^4 \cdot 3^2\)[/tex]
[tex]\[ 2^4 \cdot 3^2 = 16 \cdot 9 = 144 \][/tex]
This calculation gives us 144, and it uses prime factors (2 and 3). Therefore, this is a valid prime factorization of 144.
### Option 4: [tex]\(2 \cdot 3\)[/tex]
[tex]\[ 2 \cdot 3 = 6 \][/tex]
This is far from 144, so this cannot be the correct prime factorization.
### Conclusion:
The correct prime factorization of 144 is:
[tex]\[ 2^4 \cdot 3^2 \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.