Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the domain of the function [tex]\((f \times g)(x)\)[/tex], where [tex]\(f(x) = x + 7\)[/tex] and [tex]\(g(x) = \frac{1}{x - 13}\)[/tex], we need to consider the domains of the individual functions [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex] and find their intersection within the context of the combined function [tex]\((f \times g)(x)\)[/tex].
1. Domain of [tex]\(f(x) = x + 7\)[/tex]:
- The function [tex]\(f(x) = x + 7\)[/tex] is a linear function.
- Linear functions are defined for all real numbers.
- Hence, the domain of [tex]\(f(x)\)[/tex] is all real numbers, i.e., [tex]\(\mathbb{R}\)[/tex].
2. Domain of [tex]\(g(x) = \frac{1}{x - 13}\)[/tex]:
- The function [tex]\(g(x) = \frac{1}{x - 13}\)[/tex] is a rational function.
- Rational functions are defined for all real numbers except where the denominator is zero.
- The denominator of [tex]\(g(x)\)[/tex] is [tex]\(x - 13\)[/tex], which is zero when [tex]\(x = 13\)[/tex].
- Hence, the domain of [tex]\(g(x)\)[/tex] is all real numbers except [tex]\(x = 13\)[/tex], i.e., [tex]\(\mathbb{R} \setminus \{13\}\)[/tex].
3. Domain of [tex]\((f \times g)(x) = f(x) \times g(x)\)[/tex]:
- To form [tex]\((f \times g)(x)\)[/tex], we multiply [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex]: [tex]\((f \times g)(x) = (x + 7) \times \frac{1}{x - 13}\)[/tex].
- Since [tex]\(f(x)\)[/tex] is defined for all real numbers and [tex]\(g(x)\)[/tex] is defined for all real numbers except [tex]\(x = 13\)[/tex], the product [tex]\((f \times g)(x)\)[/tex] will be defined wherever both functions are defined.
- Therefore, [tex]\((f \times g)(x)\)[/tex] is defined for all real numbers except [tex]\(x = 13\)[/tex].
So, the domain of [tex]\((f \times g)(x)\)[/tex] is:
[tex]\[ x \ne 13 \][/tex]
Thus, the answer is:
[tex]\[ \boxed{x \ne 13} \][/tex]
1. Domain of [tex]\(f(x) = x + 7\)[/tex]:
- The function [tex]\(f(x) = x + 7\)[/tex] is a linear function.
- Linear functions are defined for all real numbers.
- Hence, the domain of [tex]\(f(x)\)[/tex] is all real numbers, i.e., [tex]\(\mathbb{R}\)[/tex].
2. Domain of [tex]\(g(x) = \frac{1}{x - 13}\)[/tex]:
- The function [tex]\(g(x) = \frac{1}{x - 13}\)[/tex] is a rational function.
- Rational functions are defined for all real numbers except where the denominator is zero.
- The denominator of [tex]\(g(x)\)[/tex] is [tex]\(x - 13\)[/tex], which is zero when [tex]\(x = 13\)[/tex].
- Hence, the domain of [tex]\(g(x)\)[/tex] is all real numbers except [tex]\(x = 13\)[/tex], i.e., [tex]\(\mathbb{R} \setminus \{13\}\)[/tex].
3. Domain of [tex]\((f \times g)(x) = f(x) \times g(x)\)[/tex]:
- To form [tex]\((f \times g)(x)\)[/tex], we multiply [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex]: [tex]\((f \times g)(x) = (x + 7) \times \frac{1}{x - 13}\)[/tex].
- Since [tex]\(f(x)\)[/tex] is defined for all real numbers and [tex]\(g(x)\)[/tex] is defined for all real numbers except [tex]\(x = 13\)[/tex], the product [tex]\((f \times g)(x)\)[/tex] will be defined wherever both functions are defined.
- Therefore, [tex]\((f \times g)(x)\)[/tex] is defined for all real numbers except [tex]\(x = 13\)[/tex].
So, the domain of [tex]\((f \times g)(x)\)[/tex] is:
[tex]\[ x \ne 13 \][/tex]
Thus, the answer is:
[tex]\[ \boxed{x \ne 13} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.